Workshop: 12th International Workshop on Runtime and Operating Systems for Supercomputers (ROSS)
Authors: Dejan Milojicic (Hewlett Packard Labs)
Abstract: The high performance computing is evolving rapidly, shaped by the confluence of three trends: a) traditional simulation and modeling workloads are converging with massive data analytic and AI/ML workflows; b) the efficiency of special purpose heterogeneous hardware is increasing; and c) the demand for flexible delivery models that blend traditional on-premises deployments with cloud-like as-a-service models continues to grow. Heterogeneity is driven by the end of Moore's Law, growth of data, and by the emergence of broad AI adoption that is well-suited for special-purpose hardware. To date, serverless computing abstracts the complexity of the underlying infrastructure by leveraging homogeneity and is motivated by simplified DevOps experience for new composable and scalable applications. Delivering the efficiency of heterogeneity, the productivity of serverless, and the granularity of Functions-as-a-Service demands a new architecture.
The Heterogeneous Serverless Computing (HSC) aims to enable development and delivery of HPC, HPDA, and AI (H2A) workloads with the ease and efficiency of the Cloud and with higher scale and more fluidity than supercomputers. HSC is a software-hardware co-designed infrastructure supporting H2A workflow execution economically and securely at fine granularity using Functions as a Service (FaaS). HSC targets the changeover evolution to H2A workflows with flexible consumption models, the edge-to-exascale deployment, and embraces a more maintainable, scalable, and re-usable development model. We focus on innovative uses of accelerators, such as in SmartNICs and Fabric Attached Memories, to improve performance of H2A applications and efficiency of hardware, but without compromising ease of development.