SC22 Proceedings

The International Conference for High Performance Computing, Networking, Storage, and Analysis

Research Posters Archive

Self-Supervised Learning for Automated Species Detection from Passively Recorded Soundscapes in Avian Diversity Monitoring


Authors: Dario Dematties, Bhupendra A. Raut, Rajesh Sankaran, and Nicola J. Ferrier (Argonne National Laboratory (ANL))

Abstract: By detecting different animal species reliably at scale we can protect biodiversity. Yet, traditionally, biodiversity data has been collected by expert observers which is prohibitively expensive, not reliable neither scalable. Automated species detection via machine-learning is promising, but it is constrained by the necessity of large training data sets all labeled by human experts. Here, we propose to use Self-Supervised Learning for studying semantic features from passively collected acoustic data. We utilized a joint embedding configuration to acquire features from spectrograms. We processed recordings from ∼190 hours of audio. In order to process these volumes of data we utilized a HPC cluster provided by the Argonne Leadership Computing Facility. We analyzed the output space from a trained backbone which highlights important semantic attributes of the spectrograms. We envisage these preliminary results as compelling for future automatic assistance of biologist as a pre-processing stage for labeling very big data sets.

Best Poster Finalist (BP): no

Poster: PDF
Poster summary: PDF


Back to Poster Archive Listing