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Many deep learning model architecture are an inspiration of how human brain

works however their implementation in computer programming deviates in the

sense that these networks over time become dense or are intentionally

designed in such a way to achieve better generalization and accuracy whereas

neural architecture in brain is highly sparse. In this work we target a similar

deep learning model designed to enhance CT images of Covid-19 chest scans

namely DD-Net ( short for Dense Net and Deconvolution Network) from prior

work of ComputeCovid19+. The model follows an auto encoder decoder

architecture in the deep learning paradigm and has high dimensionality due to

presence of stack convolution layers and deconvolution layers and thus takes

many compute hours of training. We propose a set of techniques which target

these two aspects of model - dimensionality and training time. We implement

structured sparsity along with a hybrid training schedule. By pruning neurons,

we make the model sparse and thus reduce the effective dimensionality and

then retrain this sparsified model with minimal additional overhead of re-

training. We also apply set of techniques tailored with respect to underlying

hardware in order to better utilize the existing components of hardware (such

as tensor core) and thus further reduce the overall time and associated

computational cost required to train this model with the new hybrid training

schedule.

ABSTRACT

INTRODUCTION

A DL neural network was constructed from scratch namely DDNet[1]. To

which we employ structured pruning based on L1 distribution of weights

and activations which results in accuracy loss (as expected). Therefore,

In order retain generalization we re-train this sparse model. Additionally,

to better leverage sparse tensor cores we enabled mixed precision

sparse re-training of model. The efficiency of model is evaluated in terms

of enhanced image quality evaluated in terms of MSE and MS-SSIM and

training overhead in terms of time/epochs required to reach the similar

image quality baseline The evaluation of performance improvement is

considered as the reduction in this overhead required in retraining.

METHODOLOGY

CONCLUSION AND WORK IN PROGRESS

We see that with the sparse re-training schedule the model leads to a

1.46x speedup in training time. Moreover, incorporating mixed precision

enables operations to be offloaded to tensor core which have a higher

IPC and thus a further speedup of 1.37x was achieved. A speed up of

1.9x over dense training baseline with hybrid schedule under mixed

precision. We are further evaluating this work with on other modern

processors with capabilities to accelerate sparse matrix vector operation

such as AMD MI200/250 GPUs and Cerebras-CS2 system.
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Name Value

Architecture DDNET

Input image size 512x512

Number of layers 45

Number of Convolution layers 25

Number of deconvolution layers 7

Number of Parameters 783,809

Cost Function MSE + 0.2 * MS-SSIM

Figure 1. Architecture of Dense Net and Deconvolution Net 

(DDNet).

Figure 2. Architecture of a Dense block in 

DDNet.

Table 1. Architectural Details of DDNet

EVALUATION AND DISCUSSION

Figure 4. Left to Right Difference maps (calculated as pixel-wise MSE b/w enhanced image and

target high quality CT image) of DDNet baseline, Structured sparsity and Structured Sparsity with

mixed Precision [Darker is better]

Figure 5. Tensor core efficiency. Left: without sparse training Right: With Sparse Training

We see that in order to better leverage tensor cores on Nvidia Ampere

architecture; 50% sparsification of model layers (such as conv. & deconv.)

is must. Doing that we can see a better tensor core utilization to 39% from

previous 8% by the underlying cuda kernels and thus the performance

speedup.

RESULTS

In this section, we present both a qualitative and a quantitative comparison of

the results of sparsified DDNet model using the deep neural network described

above. We see that sparsified model does a better job at reducing noise (Fig.4)

and retains structural similarity with a little overhead.

Figure 3. FMA operation with fine grain structured sparsity in Nvidia Ampere sparse tensor cores[2]

In our implementation, we first trained the DDNet model without any sparsity.

This densely trained model is then used as a baseline for sparsified re-training.

We then implement structured sparsity and retrain the model to achieve the

same generalization and observe the difference in performance and overall

training time. Additionally, we further accelerate the sparsified re-training with

mixed precision which leverages tensor cores in the Nvidida GPUs. The

sparsified convolution and deconvolution layers become ideal candidate to be

accelerated by tensor cores. Tensor Cores and their associated data paths are

custom-designed to dramatically increase floating-point compute throughput

with high energy efficiency. Ampere architecture which builds on top of volta

architecture and introduces hardware optimized sparse GEMM operations

giving a significant reduction in number of clock cycles needed to compute

FMA (Fused Multiply Add) operations: Fig. 3

Table 2. The mean values of MSE, MS-SSIM obtained using the BIMCV and MIDRC Lung test dataset. 5000 

training images used along with 700 for testing.

MS-SSIM MSE
Total 

Epochs/Time

Epochs/Time 

(Dense)

Epochs/Tim

e (Sparse)

% 

Sparse

Baseline 93.79±0.49 0.0029±0.0051 50 / 73 min 50 / 73 min 0 / 0 min 0

Structured Sparsity 93.58±0.01 0.0026±0.0067 35 / 50 min 30 / 42 min 5 / 8 min 50

Structured Sparsity 

+ Mixed Precision
92.38±0.05 0.0044±0.0007 35 / 37 min 30 / 32 min 5 / 5 min 50


