
1

Live Containerized Service Migration across Edge
to Cloud Continuum

Thanawat Chanikaphon, Mohsen Amini Salehi
{thanawat.chanikaphon1,amini}@louisiana.edu

High Performance Cloud Computing (HPCC) Lab
School of Computing and Informatics, University of Louisiana at Lafayette

I. INTRODUCTION

Applications in smart IoT-based systems, such as those in
assistive technologies [8] and autonomous vehicles [10], often
have low-latency constraints to serve their goals. That is why
edge computing has emerged to bypass the network bottleneck
and bring the computing to the data proximity, thereby, fulfill-
ing these latency constraints. The inherent resource shortage
and lack of elasticity on the edge, however, has given birth to
distributed systems with a continuum of computing tiers that
can include the edge, fog, and cloud systems.

Services on the edge and fog systems desire mobility owing
to the user or data mobility, and the necessity of relocating to
the cloud upon the edge/fog oversubscription. More specifi-
cally, live migration of containerized microservices is required
for service mobility, elasticity, and load balancing purposes
[9]. Consider the example of a blind person who uses smart
glasses and needs real-time process of observed objects enters
a coffee shop where few people are watching low-latency
video streaming using the available edge. Upon arrival of the
blind person, to make room for the blind application, the video
streaming service has to be migrated to cloud without any
interruption in the watching.

Modern services on edge, fog, and cloud systems pre-
dominantly exploit containers and orchestrators. Although
container runtimes (e.g., Docker) and orchestrators recently
provided native live migration support [5], [11], they do not
allow migration across autonomous computing systems with
heterogeneous orchestrators. Our hypothesis is that non-native
and non-invasive support for the live container migration is
the need of hour and can unlock several new use cases.
That is, the native support implies making changes in the
computing infrastructure platform whereas non-native support
does not and is doable across homogeneous and heterogeneous
orchestrators. The non-native support is described in more
detail in Section II.

In this study, we develop a non-native and non-invasive
live container migration method via leveraging the nested
container runtime system (Docker-in-Docker [6]). We design
the architecture and develop the solution to enable container
migration across heterogeneous orchestrators, e.g., between
Kubernetes [4] and Mesos [7].

II. NON-NATIVE SUPPORT OF THE LIVE CONTAINER
MIGRATION

A container runtime can enable the non-native support of
the live migration by relying on an intermediate layer to enable
the feature. That is, it does not require the runtime itself to
have the ability of live migration, thus, providing a higher
degree of generality than the native support. The intermediate
layer for the container-based service can be subdivided into
2 categories, which are the nested container runtime and the
init process.

1) Nested Container Runtime: In this approach, a con-
tainerized service consists of 2 layers: the outer container (or
the host-level container) and the nested container. The outer
container run the migration-enabled nested container runtime
as the main process managing the nested container. The actual
service is deployed as a nested container. With this approach,
the service can be moved between the nested container runtime
without directly interfering with the outer container runtime.
The outer runtime can control the scheduling, isolation, and
resource usage of the nested container through its parent (the
outer container).

2) Init Process: Similar to the nested container runtime
approach, a containerized service consists of 2 processes: the
init process and the service’s process. The init process, running
as the main process of the container, spawns the service’s
process as its child on startup. The service’s process can be
checkpointed and restored as a child of another container init
process without migrating the whole container. However, this
approach requires developers to build container images having
the migration-enabled init process in the first place.

III. ARCHITECTURAL OVERVIEW OF THE LIVE
CONTAINER MIGRATION SYSTEM

The architecture of our designs consists of 4 main com-
ponents, illustrated in Figure 1. The orchestrator and the
coordinator operate at cluster-level management. The runtime
module and synchronization module operate at the container-
level management.

1) Coordinator: The coordinator is the main component
that performs migration between clusters. The migration pro-
cess is initiated by sending a request to the coordinator of the
source cluster. Communication between clusters, monitoring
of container status during the migration, and recovery in case
of failure are done through coordination between the source
cluster coordinator and the destination cluster coordinator.



2

2) Orchestrator: An orchestrator is a native component that
already exists in the cluster. To enable live migration support,
the orchestrator must be aware of the status of the container
when being migrated. This mechanism can be seamlessly
added using the operator pattern [2]. The operator will watch
the occurring events during the migration and respond as
required. Moreover, to relieve the burden of developers, the
orchestrator requires a feature to automatically modify the
container structure, such as adding a nested container runtime
to the container. This feature can be implemented using an
interceptor pattern [13]. By the interceptor detecting and
modifying requests to the orchestrator, the developers can
deploy services as usual.

3) Synchronization Module: During the migration, the ap-
plications are checkpointed to the checkpointed files. It is
necessary to have a volume to store these files in each
service. This module is responsible for synchronizing the
checkpointed files between 2 volumes (source and destination).
The connection between the two services is peer-to-peer i.e.,
not through the coordinators, in order to minimize the hop of
data transfer.

4) Runtime Module: The runtime module consists of the
actual application and other necessary components that enable
live migration features. The application is either a process or a
nested container depending on the type of non-native support
used.

In the case of using the nested container runtime, the
orchestrator cannot directly manipulate the nested container
such as auto-restart the failed container (self-healing). This
problem can be solved by connecting the nested container to
the orchestrator with the ambassador pattern [3]. Figure 1
elaborates on the internal components of the runtime module
using the nested container runtime. The nested container has
its own ambassador, which is the sibling container of the
outer container. When an ambassador container is created, it
also creates a nested container. If the nested container exits,
the ambassador exits with the same status code, allowing the
orchestrator to recognize the state of the nested container and
decide to operate self-healing. Another component required in
the nested container runtime approach is Engine. Operations
related to nested containers such as create, checkpoint, restore,
etc. must be requested through the Engine, which handles
depending on that service migration status.

Fig. 1: Bird-eye view of the architecture.

IV. EVALUATION

In each experiment, we set up two VMs in two different
physical machines. A selected orchestrator is installed per VM.
We developed the test application, which consumes an amount
of memory as configured and counts a number every second.
We chose an implementation for each approach as follows:
(A) the work of Vu et al., [12] as the native approach, (B)
Docker-in-Docker as the non-native approach using the nested
container runtime, and (C) FastFreeze [1] as the non-native
approach using the init process.

We evaluated the performance in live migration between
these approaches in two scenarios. In the first scenario, we per-
formed the live migration between homogeneous Kubernetes
orchestrators and varied the size of the application memory
footprint. The metric of the evaluation is the service downtime.
It can be observed by letting the application print a number
every second and calculate the excess of 1 second between
two printed numbers. Figure 2 demonstrates how the downtime
increases when the size of the application memory footprint
grows.

Fig. 2: Service downtime in migration across homogeneous
orchestrators.

In the second scenario, we evaluated the possibility to mi-
grate across heterogeneous orchestrators using each approach.
We set up 5 container orchestrators for migrating a 128 MiB
memory footprint application from them to Kubernetes. The
result is shown in Table I. K8s is the migration from the same
version of Kubernetes. Mesos is the migration from Apache
Mesos. K3s is the migration from K3s, the lightweight version
of Kubernetes, for simulating the edge-to-cloud migration.
Mini. is the migration from Minishift, a single-node version
of OpenShift, for simulating the migration between different
distributions of Kubernetes. Mini.* is the migration from Min-
ishift running on a different operating system for simulating
the migration between different versions of the OS kernel.

K8s Mesos K3s Mini. K8s Mesos K3s Mini.

Native 3.14 Inf. Inf. Inf. Inf. 3.06 Inf. Inf. Inf. Inf.

Nothing 17.33 17.70 17.23 17.49 Inf. 12.21 12.08 12.13 12.75 Inf.

36.75 35.65 36.91 36.87 37.57 31.29 31.32 31.35 31.30 32.59

Approach Required
changing

Migration time (seconds) Downtime (seconds)
Mini.* Mini.*

Orches-
trator

Nested
container
runtime

Init
process

Appli-
cation

TABLE I: Migration time and service downtime of a 128 MiB
memory footprint application during the live migration from
various orchestrators to Kubernetes.



3

REFERENCES

[1] Linux Plumbers Conference 2020. Linux Plumbers Conference 2020
(24-28 August 2020): FastFreeze: Unprivileged checkpoint/restore for
containerized applications · Indico. Online; Accessed on 7 May 2022.

[2] The Kubernetes Authors. Operator pattern — Kubernetes. Online;
Accessed on 7 May 2022.

[3] The Kubernetes Authors. The Distributed System ToolKit: Patterns for
Composite Containers, July 2020. [Online; accessed 8. Aug. 2022].

[4] The Kubernetes Authors. Production-Grade Container Orchestration,
July 2022. [Online; accessed 5. Jul. 2022].

[5] CRIU. Docker - CRIU. Online; Accessed on 7 May 2022.
[6] Docker. Docker - Official Image | Docker Hub, June 2022. [Online;

accessed 30. Jun. 2022].
[7] The Apache Software Foundation. Apache Mesos, May 2022. [Online;

accessed 5. Jul. 2022].
[8] Kiryong Ha, Zhuo Chen, Wenlu Hu, Wolfgang Richter, Padmanabhan

Pillai, and Mahadev Satyanarayanan. Towards wearable cognitive
assistance. In Proceedings of the 12th Annual International Conference
on Mobile Systems, Applications, and Services, MobiSys ’14, pages 68–
81, 2014.

[9] Chunlin Li, Jingpan Bai, Yuan Ge, and Youlong Luo. Heterogeneity-
aware elastic provisioning in cloud-assisted edge computing systems.
Future Generation Computer Systems, 112:1106–1121, 2020.

[10] Bigi Varghese Philip, Tansu Alpcan, Jiong Jin, and Marimuthu
Palaniswami. Distributed real-time iot for autonomous vehicles. IEEE
Transactions on Industrial Informatics, 15(2):1131–1140, 2018.

[11] Adrian Reber. Minimal checkpointing support by adrianreber · Pull
Request #104907 · kubernetes/kubernetes. Online; Accessed on 8 Aug
2022.

[12] SSU-DCN. SSU-DCN/podmigration-operator. Online; Accessed on 7
May 2022.

[13] Wikipedia contributors. Interceptor pattern — Wikipedia, the free
encyclopedia. https://en.wikipedia.org/w/index.php?title=Interceptor
pattern&oldid=937343798, 2020. [Online; accessed 4-July-2022].

https://en.wikipedia.org/w/index.php?title=Interceptor_pattern&oldid=937343798
https://en.wikipedia.org/w/index.php?title=Interceptor_pattern&oldid=937343798

	Introduction
	Non-Native Support of the Live Container Migration
	Nested Container Runtime
	Init Process

	Architectural Overview of the Live Container Migration System
	Coordinator
	Orchestrator
	Synchronization Module
	Runtime Module

	Evaluation
	References

