
 

CONVERGENCE ACROSS THE 
EIGENSPECTRUM 
Convergence graphs represent the convergence rates across the 
eigen spectrum of a small matrix with entries from a uniform random 
distribution. The largest eigenvalues experience very rapid 
convergence, that deteriorates for the smaller ones further down the 
spectrum.  This is the main potential for further extension to leverage 
eigen spectrum shifting to level up the convergence in any portion of 
the eigenspectrum.

ABSTRACT  
As the new hardware is being equipped with powerful low-precision 
capabilities driven primarily by the needs of the burgeoning field of 
Artificial Intelligence (AI), mixed-precision algorithms are now showing 
far greater potential and renewed interest in scientific computing 
community.  The multi-precision methods commonly follow 
approximate-iterate scheme by first obtaining the approximate 
solution from a low-precision factorization and solve.  Then, they 
iteratively refine the solution to the desired accuracy that is often as 
high as what is possible with traditional approaches.  While targeting 
symmetric and Hermitian eigenvalue problems of the form Ax=λx, we 
revisit the SICE algorithm by applying the Sherman-Morrison formula 
on the diagonally-shifted tridiagonal systems, we propose an updated 
SICE-SM algorithm.  We exploited asynchronous scheduling 
techniques to take advantage of the new computational graph 
enabled by the use of mixed-precision in the eigensolver. This allowed 
us to hide some of the extra work required by mixed-precision 
algorithm behind the tasks required by the classic eigensolver and 
thus minimize the overheads resulting from introducing extra 
floating-point precision data and compute. This allowed us to 
maximize the efficiency on both multicore CPU as well as on 
GPU-accelerated platforms. By incorporating the latest two-stage 
algorithms from the PLASMA and MAGMA software libraries for 
numerical linear algebra, we achieved up to 3.6x speedup using the 
mixed-precision eigensolver with the blocked SICE-SM algorithm for 
iterative refinement when compared with full double complex 
precision solvers for the cases with a portion of eigenvalues and 
eigenvectors requested.

INTRODUCTION  
SICE (Subroutine for Improving Computed Eigevalues) algorithm [1]–[3] 
improves accuracy of Hermitian (or symmetric) eigenvalue problem. To 
improve its efficiency on modern platforms with hardware accelerators 
we introduced two new parallel agorithms and exploited the 
scheduling

ORIGINAL  ALGORITHM
SICE is the classic refinement algorithm we implemented to profile it 
on modern hardware with contemporary software stack including 
two-stage eigenvalue solver that was not available at the time of 
SICE's introduction. The main performance downside of SICE algorithm 
is the fact that it is based on element-wise and vector-wise operations. 
In other words, it relies on BLAS Level 1 and 2 which is highly 
inefficient on current systems with hardware accelerators. The 
problem is exacerbated by the path that these low-performance 
operations are on the critical path of the algorithm and their overhead 
increases with the increasing problem size.

NEW  ALGORITHM
SICE-SM is our new parallel algorithm that overcomes the main 
bottlenecks of the original SICE algorithm by introducing 
Sherman-Morrison formula into the theoretical formulation. This 
allowed to lift some operations from lower-level BLAS and improve 
data reuse for better utilization of the memory hierarchy and 
accelerators' compute units.

NEW BLOCKED  
ALGORITHM
Blocked SICE-SM is our new parallel algorithm that further improves 
the cache-blocking opportunities that target the fastest levels of the 
memory hierarchy such as CPU caches, register files, and GPU shared 
memory. Better compute efficiency improves performance of the new 
mixed-precision tasks while the asynchronous scheduling continues to 
exploit independent operations for parallel execution and hiding less 
efficient tasks behind the compute-intensive ones for maximal overall 
utilization.

ONE- & TWO-STAGE 
EIGENVALUE SOLVER
The classic eigenvalue problem  algorithm was one-stage (as shown 
at the top): reduction to tridiagonal form was performed by a single 
computational stage without intermediate steps. SBR (Successive 
Band Reduction) Toolbox allowed multiple stage with each one 
reducing bandwidth of the original matrix but those multiple stage 
increased back-transformation cost and computing eigenvectors was 
possible but not impractical. Hence, two stage algorithm (shown at 
the bottom) struck a balance by only admitting two computational 
stages: reduction from full to band form and reduction from band to 
tridiagonal. The computational overhead of transformation was twice 
as large but it still could outperform the classic single-stage 
algorithm due to its parallel and compute intensive implementation 
not possible for single-stage algorithm.

PERFORMANCE FOR VARYING COUNTS OF EIGENPAIRS
The performance figures below show the behavior of our HPC implementations of two accelerated platforms that differ in their mixed-precision compute 
balance: 2x and 32x, respectively.

DAG OF COMPUTE TASKS
The compute DAG (Direct Acyclic Graph) shown in the figure is a 
simplified representation that underscores the main algorithmic 
components of the methods we proposed.  The asynchrony of 
compute tasks is fully exploited and the hardware is presented with a 
mix of workloads that vary in compute intensity and reliance on the 
memory hierarchy and thus they use the hardware more efficiently.
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