
Analysis and Visualization of Important Performance
Counters To Enhance Interpretability of Autotuner Output

Mohammad Zaeed1, Tanzima Z. Islam1, Younghyun Cho3, Xiaoye Sherry Li2, Hengrui Luo2, Yang Liu2

1Texas State University , 2Lawrence Berkeley National Laboratory, 3University of California, Berkeley

ABSTRACT

BACKGROUND
• GPTune is an online autotuning framework

for suggesting user optimal parameter
configurations using Bayesian
optimization methodologies.

• DASHING is a performance analytics tool for
analyzing and visualizing application-
system interactions collected via
performance counters.

Autotuning is a widely used method for guiding developers of large-scale applications to achieve high performance. However, autotuners typically employ black-box optimizations to
recommend parameter settings at the cost of users missing the opportunity to identify performance bottlenecks. Performance analysis fills that gap and identifies problems and optimization
opportunities that can result in better runtime and utilization of hardware resources. This work combines the best of the both worlds by integrating a systematic performance analysis and
visualization approach into a publicly available autotuning framework, GPTune, to suggest users which configuration parameters are important to tune, to what value, and how tuning the
parameters affect hardware-application interactions. Our experiments demonstrate that a subset of the tuning parameters impact the execution time of the NIMROD application for a
specific task; the Plasma-DGEMM routine spends a significant amount of time waiting for responses from the offcore L3 resource on Cori-Haswell.

CHALLENGES
• Large number of performance counters

describing application-system interactions
makes it hard for users to understand
bottlenecks.

• Analysis and visualization of performance
needs to occur on a real-time web interface.

METHODOLOGY AND PRELIMINARY RESULT

Fig 1. Divide performance counters 
into meaningful groups

Compute resource importance
 Accumulate beliefs from all selected counters per resource

Future Work

Approach

Analysis from a simulated application

• (From Fig 3a) One can infer OFFCORE to be the most important
resource (has the largest area). The DTLB load misses is an
important event, hence, users can increase the TLB page sizes to
reduce this event.

• (From Fig 3b and 3c) npz and NSUP are the most important
parameters for the NIMROD application. The rightmost figure
shows that both runtime and npz increase along the X-axis, while
NREL shows unpredictable behavior. Therefore, decreasing the
value of npz will decrease the runtime of NIMROD.

Fig 2. Calculate a belief score for every group to show how well it can explain the 
objective function

(a) Analysis on PLASMA-DGEMM 
kernel’s performance counters

• Visualize sensitivity of applications on the tuning parameters.
• Make the on-line importance analysis and visualization code

available via GPTune’s public repository.

Fig 3. Visualize with interactivity

(b) Analysis on NIMROD’s 
Tuning parameters

=

Compute counter Importance

Compute prediction error

Group 
Importance

Convert error to “Belief”

Compute resource importance

• Accumulate beliefs from all
selected counters per resource

Importance

Objective 
function

Groups

Counters

Phases

Run
time

• Group counters according to resources they
pertain to.

• Identify important groups that can predict
the objective function, e.g., execution time,
accurately.

• Visualize the information in a hierarchical
manner to enable a comparative view of the
relative importance across groups.

(c) Plotting the dataset to validate the
importance calculations

Acknowledgement
This project was partially funded by the Research Enhancement
Program at Texas State University, AMD, and Lawrence Berkeley
National Laboratory.

Sample Index

N
or

m
al

iz
ed

 V
al

ue
s

Single Phase

Starting 
position

Important Resources presented 
in counter-clockwise order

OBSERVATIONS


	Slide Number 1

