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Introduction

• The Influence Maximization with Martingales (IMM) algorithm is 
important for determining the most influential seeds in a network.
• This includes social media influence, spread of misinformation, and 

even viral spread in an infectious disease network.
• FPGA Acceleration has been explored previously with the Sampling 

step[1], making Seed Selection the bottleneck in current implementations.
• Seed Selection is also an attractive acceleration target for its “almost 

regular” memory access pattern.

Contributions

• Implemented FPGA Acceleration for the Seed Selection step
• Outperforms a single CPU core given a favorable workload to vertex ratio, 

showing promise for acceleration speedup in a multi-core heterogeneous 
system.

Challenges

• Unlike other histogram computations, an irregular access is required for checking to 
see if a set has been covered or not. 

• The RRR Sets and count outputs are too large to be stored in on-chip memory, so 
they must be stored in external DRAM.

Experimental Setup

• Intel Xeon E5-2637 v4 CPU - 8x32GB DDR4 RAM using OpenMP
• Xilinx Alveo U250  - 4x16GB DDR4 RAM with Vitis Unified Software Platform 2020.2
• We tested our setup on the SNAP data sets containing real-world social networks[2].

• CPU only with 4 cores using a state-of-the-art parallel IMM algorithm[3].
• FPGA running in parallel with 3 CPU cores and 1 CPU core managing FPGA data 

movement. The FPGA is given an equivalent workload as 1 CPU core.

Preliminary Results

Proposed Architecture

• Utilize port widened bursts for fast and efficient histogram reduction
• Cache the set mask in on-chip Ultra RAMs for fast random accesses
• Burst read RRR sets to be streamed via FIFO into the compute unit and pre-process 

the output for fast burst writes.• The algorithm is separated into three 
main parts as shown in the 
pseudocode

• Estimate Theta: Estimate the number 
of sets to be generated by the 
Sampling stage to achieve a good 
IMM estimation.

Input: G, k, 𝜀
Output: S

begin:

{R,𝜃}←EstimateTheta(G,k,𝜀)
R←Sample(G,𝜃-|R|,R)
𝑆←SelectSeeds(G,k,R)

end

• Sampling: Generate several random reverse reachable (RRR) sets 
determined by Estimate Theta using a given diffusion model. For this 
work, we use the Linear Threshold Model. 

• Seed Selection: Find the vertex with the most occurrences in all graphs 
from the Sampling stage, and record that as the most influential seed. 
Remove all sets containing this node and repeat the calculation until k
vertices have been selected. This step is the target for FPGA acceleration.

Seed Selection Overview Observations

• Up to 4.78x speedup vs CPU in smaller graphs (cit-HepTh), but only 0.75x
in larger graphs (soc-LiveJournal1).
• In larger graphs, the overhead for burst writing its entire vertex range 

in low workloads diminishes the speedup.
• As the workload increases with more seed selection iterations, FPGA 

overtakes CPU again as the write overhead becomes negligible.

[1] R. Neff, M. Minutoli, A. Tumeo, and M. Becchi, “Fpga-accelerated ripples,” in 

Proceedings of the International Conference for High Performance Computing, 

Networking, Storage and Analysis (SC ’21), 2021.

[2] J. Leskovec and A. Krevl. 2014. SNAP Datasets: Stanford Large Network 

Dataset Collection. http://snap.stanford.edu/data

[3] M. Minutoli, M. Drocco, M. Halappanavar, A. Tumeo, and A. Kalyanaraman. 

2020. CuRipples: Influence Maximization on Multi-GPU Systems. 

InProceedings of the 34th ACM International Conference on Super-computing 

(Barcelona, Spain) (ICS ’20). Association for Computing Machinery, New York, 

NY, USA, Article 12, 11 pages. https://doi.org/10.1145/3392717.3392750

References

Conclusion and Future Work

• We were able to achieve considerable speedup on smaller sized graphs 
due to a lower ratio of workload to graph size.

• In the future, we plan to further parallelize the read and calculation units 
of the Count Uncovered kernel, exposing even better performance.

• Partitioning schemes to lower the number of countable vertices per 
compute unit can greatly reduce the static overhead on lower workloads.

• Only using the FPGA as an accelerator starting at iterations where it 
outperforms CPU.

The research is supported by the U.S. DOE Exascale Computing Project's (17-SC-20-SC) 
ExaGraph codesign center at Pacific Northwest National Laboratory (PNNL), by Xilinx, Inc. 
under Strategic Partnership Project Agreement No. 78023 at PNNL, and by NSF award 
CNS-1812727 at North Carolina State University.

Acknowledgments

Set ID

14

15

14

37

38

39

Vertex ID

5

5

6

Set Mask

0

0

1

13

14

15

Vertex Count

2

5

0

4

5

6

1) Check if 
countable
(Set Mask == 0)

2) Increment 
counter

32 bits 32 bits 1 bit 32 bits

RRR Sets Seed Selection 
(Find Most 
Influential)

Top-k Seeds

Seed Selection

Load Data 
to Device

Initial 
Count

Get Next 
Seed

Update 
Counters

Return 
Resulting Seeds

Update Counters

DRAM 0

DRAM 1

DRAM 2

DRAM 3

Count Uncovered

Count Uncovered

Update Mask

Update Mask

SLR Reduction

SL
R

0
SL

R
2

SL
R

3
SL

R
1

5 2 4

3 1 0

5 0 2 4

3 2 1 0

count

vertex id

continuous

Count Uncovered

Burst Read 
Set Mask

Burst Read 
Vertex & 
Set IDs

Calculate 
Vertex 
Count

Write Pre-
Process

Ultra RAM
(Set Mask)

Cache 
Set 

Mask

D
R

A
M

 0
/3

Burst Write 
Count

D
R

A
M

 1
/2

FI
FO

FI
FO

FI
FO

FI
FO

Update Mask

Binary Search 
Lower and 

Upper Bounds

Update Set 
Mask In Given 

Range

DRAM 0/3

SLR Reduction

Store in 
Register if New 

Value > Old 
Value

Reduce To 
Single Max 

Value

DRAM 1

D
R

A
M

 0
D

R
A

M
 2

Burst Read 
Count

Burst Read 
Count

Burst Read 
Count

Vector Add
16 16

Write Output

IMM Algorithm Background


