
PNNL is operated by Battelle for the U.S. Department of Energy 9/29/2022

For additional information, contact:

Exploring FPGA Acceleration of Seed Selection on
Influence Maximization
Reece Neff, Marco Minutoli, Antonino Tumeo, Mahantesh Halappanavar, Michela Becchi
{reece.neff, marco.minutoli, antonino.Tumeo, mahantesh.halappanavar}@pnnl.gov, {rwneff, mbecchi}@ncsu.edu

PNNL-SA-177079Reece Neff | (509) 372-6591 | reece.neff@pnnl.gov

Introduction

• The Influence Maximization with Martingales (IMM) algorithm is
important for determining the most influential seeds in a network.
• This includes social media influence, spread of misinformation, and

even viral spread in an infectious disease network.
• FPGA Acceleration has been explored previously with the Sampling

step[1], making Seed Selection the bottleneck in current implementations.
• Seed Selection is also an attractive acceleration target for its “almost

regular” memory access pattern.

Contributions

• Implemented FPGA Acceleration for the Seed Selection step
• Outperforms a single CPU core given a favorable workload to vertex ratio,

showing promise for acceleration speedup in a multi-core heterogeneous
system.

Challenges

• Unlike other histogram computations, an irregular access is required for checking to
see if a set has been covered or not.

• The RRR Sets and count outputs are too large to be stored in on-chip memory, so
they must be stored in external DRAM.

Experimental Setup

• Intel Xeon E5-2637 v4 CPU - 8x32GB DDR4 RAM using OpenMP
• Xilinx Alveo U250 - 4x16GB DDR4 RAM with Vitis Unified Software Platform 2020.2
• We tested our setup on the SNAP data sets containing real-world social networks[2].

• CPU only with 4 cores using a state-of-the-art parallel IMM algorithm[3].
• FPGA running in parallel with 3 CPU cores and 1 CPU core managing FPGA data

movement. The FPGA is given an equivalent workload as 1 CPU core.

Preliminary Results

Proposed Architecture

• Utilize port widened bursts for fast and efficient histogram reduction
• Cache the set mask in on-chip Ultra RAMs for fast random accesses
• Burst read RRR sets to be streamed via FIFO into the compute unit and pre-process

the output for fast burst writes.• The algorithm is separated into three
main parts as shown in the
pseudocode

• Estimate Theta: Estimate the number
of sets to be generated by the
Sampling stage to achieve a good
IMM estimation.

Input: G, k, 𝜀
Output: S

begin:

{R,𝜃}←EstimateTheta(G,k,𝜀)
R←Sample(G,𝜃-|R|,R)
𝑆←SelectSeeds(G,k,R)

end

• Sampling: Generate several random reverse reachable (RRR) sets
determined by Estimate Theta using a given diffusion model. For this
work, we use the Linear Threshold Model.

• Seed Selection: Find the vertex with the most occurrences in all graphs
from the Sampling stage, and record that as the most influential seed.
Remove all sets containing this node and repeat the calculation until k
vertices have been selected. This step is the target for FPGA acceleration.

Seed Selection Overview Observations

• Up to 4.78x speedup vs CPU in smaller graphs (cit-HepTh), but only 0.75x
in larger graphs (soc-LiveJournal1).
• In larger graphs, the overhead for burst writing its entire vertex range

in low workloads diminishes the speedup.
• As the workload increases with more seed selection iterations, FPGA

overtakes CPU again as the write overhead becomes negligible.

[1] R. Neff, M. Minutoli, A. Tumeo, and M. Becchi, “Fpga-accelerated ripples,” in

Proceedings of the International Conference for High Performance Computing,

Networking, Storage and Analysis (SC ’21), 2021.

[2] J. Leskovec and A. Krevl. 2014. SNAP Datasets: Stanford Large Network

Dataset Collection. http://snap.stanford.edu/data

[3] M. Minutoli, M. Drocco, M. Halappanavar, A. Tumeo, and A. Kalyanaraman.

2020. CuRipples: Influence Maximization on Multi-GPU Systems.

InProceedings of the 34th ACM International Conference on Super-computing

(Barcelona, Spain) (ICS ’20). Association for Computing Machinery, New York,

NY, USA, Article 12, 11 pages. https://doi.org/10.1145/3392717.3392750

References

Conclusion and Future Work

• We were able to achieve considerable speedup on smaller sized graphs
due to a lower ratio of workload to graph size.

• In the future, we plan to further parallelize the read and calculation units
of the Count Uncovered kernel, exposing even better performance.

• Partitioning schemes to lower the number of countable vertices per
compute unit can greatly reduce the static overhead on lower workloads.

• Only using the FPGA as an accelerator starting at iterations where it
outperforms CPU.

The research is supported by the U.S. DOE Exascale Computing Project's (17-SC-20-SC)
ExaGraph codesign center at Pacific Northwest National Laboratory (PNNL), by Xilinx, Inc.
under Strategic Partnership Project Agreement No. 78023 at PNNL, and by NSF award
CNS-1812727 at North Carolina State University.

Acknowledgments

Set ID

14

15

14

37

38

39

Vertex ID

5

5

6

Set Mask

0

0

1

13

14

15

Vertex Count

2

5

0

4

5

6

1) Check if
countable
(Set Mask == 0)

2) Increment
counter

32 bits 32 bits 1 bit 32 bits

RRR Sets Seed Selection
(Find Most
Influential)

Top-k Seeds

Seed Selection

Load Data
to Device

Initial
Count

Get Next
Seed

Update
Counters

Return
Resulting Seeds

Update Counters

DRAM 0

DRAM 1

DRAM 2

DRAM 3

Count Uncovered

Count Uncovered

Update Mask

Update Mask

SLR Reduction

SL
R

0
SL

R
2

SL
R

3
SL

R
1

5 2 4

3 1 0

5 0 2 4

3 2 1 0

count

vertex id

continuous

Count Uncovered

Burst Read
Set Mask

Burst Read
Vertex &
Set IDs

Calculate
Vertex
Count

Write Pre-
Process

Ultra RAM
(Set Mask)

Cache
Set

Mask

D
R

A
M

 0
/3

Burst Write
Count

D
R

A
M

 1
/2

FI
FO

FI
FO

FI
FO

FI
FO

Update Mask

Binary Search
Lower and

Upper Bounds

Update Set
Mask In Given

Range

DRAM 0/3

SLR Reduction

Store in
Register if New

Value > Old
Value

Reduce To
Single Max

Value

DRAM 1

D
R

A
M

 0
D

R
A

M
 2

Burst Read
Count

Burst Read
Count

Burst Read
Count

Vector Add
16 16

Write Output

IMM Algorithm Background

