
From Fig.4, we observe that when , numD roughly doubles the
linear value, but numC is much less than the linear one. Theoretically, this r
delivers the optimal overall performance.

Parameterized Radix-r Bruck Algorithm for All-to-all
Communication

Ke Fan (kefan@uab.edu), Sidharth Kumar (sid14@uab.edu)

Motivation

Introduction Bruck Algorithm with Radix-r Modified Bruck

Conclusion

Acknowledgements

Background: Uniform all-to-all communication (MPI_Alltoall)
is one of the most important and extensively utilized
communication patterns in modern HPC applications.

data-block
data-element

Each process has P
(process count) data-
blocks, and each
data-block consists
of n data-elements.

Each process needs to send data-block i to process i

The standard MPI_Alltoall
implementations include the spread-out
algorithm and Bruck algorithm. A
selection between them is made at
runtime based on N and P.

P: process count, N: size per data-block

Hockney performance mode:

The Bruck algorithm works well for short messages (latency-dominated),
whereas the spread-out algorithm performs well for larger messages
(bandwidth-dominated).

Motivation: The current standard MPI library implementations
only use two special cases:

• the spread-out algorithm is optimal with respect to the
measured data-transfer cost.

• The Bruck algorithm with radix-two is optimal with respect to

the measure of the start-up time.

However, these two cases are not the best solutions for some
scenarios. Therefore, we conducted experimental investigations of
the tuneable Bruck algorithm with varying radix-r. We also figure
out how to calculate the number of data-blocks transferred.

A trade-off between the comm start-up cost (latency) and the data-transfer
cost (bandwidth).

The Bruck algorithm increases
the total number of comm steps
while decreasing the total sent
message size when we increase

radix-r.

Bruck’s algorithm requires three phases:

An example of the first communication step (P = 8):

The data-block indexes can be
encoded using radix-r representation
with digits, resulting in w
rounds. For each round k, there are at
most r - 1 steps.

radix-r representation

w = ⌈logP
r ⌉

Therefore, the number of communication steps:
numC = w × (r − 1)

However, if , the last round has fewer steps than the other rounds.
Therefore:

rw > P

numC = w × (r − 1) − ⌊(rw − P)/rw−1)⌋

For each step z (0 < z < r) in x (-1 < x < w) round, each process sends at
least data-blocks to its destination, and the remaining
number of data-blocks is .

The number of actual exchanged data-blocks per step is:

lc = P/rx+1 × rx

re = P % rx+1

t = re − z × rx, numD =
lc, if (t ≦ 0)
lc + rx, else if (t/rx > 0)
lc + t % rx, else

We can easily calculate numC and numD for any given P using these
equations, such as Fig.4.

P = 4096

Fig.4

Fig.3

Fig.2

Fig.1

Fig.5

Fig.6

r = ⌈ P⌉

Fig.7

r = 48 (⌈ 2048⌉ = 46)
delivers the best performance.

Examples of the Bruck algorithm with radix r = 2, 4, and 5 for 6-process:

R = 2

R = 4

R = 5

Fig.8

The modified Bruck algorithm improves upon the Bruck algorithm by
eliminating the final rotation phase.

Bruck (top) vs. Modified Bruck (bottom)

Evaluation
All our experiments are performed on the Theta supercomputer at
the Argonne Leadership Computing Facility (ALCF).

Architecture: Intel-Cray XC40

Cores: 281,088

Speed: 11.7 petaflops

Memory: 843 TB

High-bandwidth Memory: 70TB

Experiment A: varying radix r with fixed process count P and size
per data-block N (bytes).

P=512, N=64

We repeated each experiment 100 times and plotted the mean along
with the standard deviations (as error bars).

P=512, N=512

P=512, N=4096

r = 22, 50.46% r = 22, 34.2%

r = 22, 1.54%

P=1024, N=64

r = 36, 50.65%

r = 32, 50.29%

P=1024, N=512

r = 36, 0.22%

P=1024, N=4096

(⌈ 512⌉ = 23), (⌈ 1024⌉ = 32), (⌈ 2048⌉ = 46), (⌈ 4096⌉ = 64)

r = 48, 54.40%

P=2048, N=64

r = 48, 49.74%

P=2048, N=512

r = 48, 5.85%

P=2048, N=4096

r = 72, 56.69%

P=4096, N=64

r = 64, 49.97%

P=4096, N=512

r = 64, 23.10%

P=4096, N=2048

Experiment B: varying N with fixed P and r.

P=4096, R=64P=512, R=22

Experiment C: varying P with fixed N and r.

R = ⌈ P⌉, N=1024
R = ⌈ P⌉, N=128

This work was funded in part by NSF RII Track-4 award 2132013. We thank
the ALCF's Directors Discretionary awards for offering us the compute hours
on the Theta Supercomputer.

Conclusion: In this paper, we explored the Bruck algorithm with varying radix
r and figured out the mathematics of calculating the number of sent data-
blocks per step and the sum of them. We performed scaling studies for a range
of message sizes and radixes, and demonstrated that Bruck with optimal radix
outperforms vendor-optimized Cray’s MPI_Alltoall by as much as 57% for
some workloads and scales.

Future work: To optimize the Bruck algorithm with radix-r, we plan to
preserve a more local communication pattern. Such as, we split all processes
into groups based on their locations on the physical nodes, and the processes
within one node perform a Bruck algorithm internally followed by an intra-
node Bruck algorithm. Moreover, more work needs to be done to build a
decision model that decides the value of r based on P and N automatically.

The Bruck algorithm with r near works well in most cases.⌈ P⌉

mailto:kefan@uab.edu
mailto:sid14@uab.edu

