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Problem Definition and Contribution
Goal: Find smaller text and image embeddings that preserve contrastive-
learning distances using hybrid variational quantum machine learning

Motivation:
• Fine-tuning CLIP to produce low-dimensional embeddings is expensive.
• Quantum machine learning algorithms are largely understudied.
Key Contributions:
• A CLIP-ACQUA model can be trained from CLIP embeddings to

reduce the latent space while preserving distances using quantum varia-
tional circuits in a self-supervised configuration.

• By applying this CLIP-ACQUA model to a large unlabelled corpus
of text and images, we obtain smaller latent spaces that preserve the
original embedding distances obtained during contrastive learning.

• Using our model requires no fine-tuning of CLIP preserving its original
robustness and manifolds.

• The data used as a demonstration aids in the modeling of consumer-to-
consumer online marketplaces for the detection of illicit activities.

Variational Quantum Machine Learning
Variational quantum circuits have been recently studied in combination
with different models, including neural networks, support vector ma-
chines, and other linear classifiers [McClean 2016, Schuld 2019]. Re-
searchers [e.g. Mari 2020] define a quantum layer as a unitary operation,
U , implemented as a variational circuit on an input state |x̂〉, that produces
the output state |y〉 as follows:

|x̂〉 → |y〉 = U(w)|x̂〉,

where w denotes the parameters of the variational circuit. It can be also
found in the literature as a block diagram as follows:

The proposed quantum hybrid model is based on a variational circuit with
many gates and operators represented in the following quantum layers:
• Hadamard operators layer. The Hadamard operator on a qubit is:

H =
1√
2

[
1 1
1 −1

]
.

Its primary purpose is to create superpositions.
• Single qubit Y rotation layer. A rotation of a qubit makes a qubit

change the spin based on the rotation angle, φ, as follows:

RY (φ) = e−iφσY /2 =

[
cos(φ/2) − sin(φ/2)
sin(φ/2) cos(φ/2)

]
.

The rotation angle φ in our research is a trainable parameter.
• CNOT qubit entangling layer. The CNOT operation, defined as:

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 ,

is aimed at linking qubits, combining them, and propagating superposi-
tion across layers.

• Expectation layer over Pauli Z operators. Finally, the output of the
circuit is a measurement that is calculated over many observations re-
turning the expected value. In our case the measurements are applied
after the Pauli Z operator defined as follows:

σz =

[
1 0
0 −1

]
.

• Quantum dressed circuit. Once the circuit is defined, it needs to be
dressed up to be combined with the classic autoencoder model. This
process involves a simple process that adds a single dense layer before
and after the quantum circuit [Mari 2020, Rivas 2021].
The number of neurons in the input layer is set to match the number
of qubits, in this study is four. The last layer has two neurons, as set
to match our visualization intent in two dimensions. This is because we
are interested in inspecting the latent space in two dimensions. However,
this can be arbitrarily set to any latent space dimension as desired.

More details at: https://baylor.ai/?tag=quantum-ml
Contact: Pablo_Rivas@Baylor.edu

Experimental Architecture and Preliminary Results
Detailed architecture including the two-layered variational quantum circuit:

Results of using the model at different stages of training:
30 epochs 100 epochs 300 epochs 500 epochs

Main take aways
• When the elements of the loss L( θi, θt ; xi, xt, dx ) are treated as a clas-

sic average, we observe immediate reconstruction gains and progressive
distance enforcement, as shown above.

• After the model is trained, it can be used to produce lower-dimensional
CLIP-based embeddings for specific applications or datasets. Quantum
advantage can be achieved upon deployment for real-time applications.

Dataset disclosures
• The data was collected from publicly available ads on consumer-to-

consumer online platforms.
• The data consists of 82.71G of posts that contain images and text. Du-

plicate posts are ignored and all unique image-text pairs are used.
• The dataset used supports research to identify illicit online activity such

as trafficking of stolen goods and sex.
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Designing the CLIP-ACQUA Model
Main idea: We train a CLIP-based model to reduce the dimensionality
of text-image embedding pairs. The process of dimensionality reduction
preserves the distances of the original latent space and takes advantage
of variational quantum circuits. This model is trained to minimize recon-
struction and distance losses:

L( θi, θt ; xi, xt, dx ) = αi||xi − x̂i||1+αt||xt − x̂t||1
+ αd|dx − ||zi − zt||2|

image-text quantum autoencoder hyperparameters

CLIP image-text embeddings and their distance

where x ∈ R512 is the input, x̂ is the reconstruction, and θ are the
model parameters, and z = qθ(x) is the new low dimensional embed-
ding achieved through an encoder q(·). Minimizing this loss yields a new
latent space that minimizes embedding reconstruction loss and preserves
original distances. Note that for αi = αt = αd = 1

3 , the loss is an average
of the three components.
CLIP-ACQUA Model
• The model uses a pre-trained model to produce image-text embedding

pairs and their distance. The model uses a vision transformer with
patches of size 32, available on HuggingFace as ViT-B/32.

• The model then is pre-trained using an autoencoder configuration using
the embeddings. A variational quantum circuit is used to find the desired
low-dimensional embeddings using gradient descent.
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