
PDTgcomp: Compilation Framework for Data Transformation Kernels on GPU
Tri Nguyen and Michela Becchi (tmnguye7, mbecchi @ncsu.edu)Department of Electrical 

and Computer Engineering

Motivation

Conversion Steps

Performance

Conclusion and Future Work

References and Acknowledgement
[1] Apache Parquet: https://parquet.apache.org
[2] GNU scientific library: https://www.gnu.org
[3] Intel MKL: https://www.intel.com/content/www/us/en/develop/documentation/get-started-with-mkl-for-

dpcpp/top.html
[4] Cuda toolkit: https://docs.nvidia.com/cuda
[5] Pandas: https://pandas.pydata.org
[6] Open GPU data science: https://rapids.ai
This work was supported by National Science Foundation awards CNS-1812727 and CCF-1907863.

Basic Code

Pushdown Transducers (PDT)

Experimental Setup

1. Convert the list of states into an if-else block in which each if-
condition guards the content of a state

2. For each state:
a. convert the associated arithmetic operation (if any) to the 

appropriate arithmetic operation on stack values
b. convert the list of outgoing transitions into an if-else block, 

with an if-statement per transition. Generate if-conditions and 
statements according to the appropriate input, output and 
stack read/write operation

3. Allocate stacks in shared memory
4. Store the remaining context information (pointers in I/O streams, 

active state indicator) into local variables to be stored in the 
register file

Transformation
class

Input dataset CPU Baseline GPU Baseline

Data
Enc/Dec

Cantebery Corpus Parquet [1] Nvidia Thrust
[4]

Matrix
Transformation

Texas A&M Sparse
Matrix

Intel
MKL [3]

Nvidia
cuSparse [4]

Histogram RDU Accident and 
Crime Report

GSL Histogram 
[2]

Nvidia Cub
[4]

CSV
Query

RDU Accident and 
Crime Report

Pandas [5] Rapids AI
[6]

System
CPU 2x Intel Xeon E5-2630 2.2GHz
GPU NVIDIA TITAN XP 12GB, 30SMs
OS/CUDA Ubuntu 18.04, CUDA toolkit 11.7

Ø Data transformation kernels are at the core of many data 
analytics, data processing and scientific applications

Ø Custom CPU and GPU libraries and hardware accelerators for 
specific data transformation tasks provide efficiency but lack 
generality and extensibility

Ø Accelerating the computational abstraction at the core of data 
transformation can benefit a broad spectrum of applications

Ø We demonstrated a method to generate efficient GPU code 
implementing data transformation tasks expressed using PDT

Ø Future work encompasses more compiler optimizations to further 
improve performance.

Objective
Ø Compilation framework that generates accelerated GPU kernels 

for data transformation tasks expressed using Pushdown 
Transducers (PDTs)

PDTgcomp speedup over custom CPU libraries

Throughput of PDTgcomp and custom GPU libraries in GB/s

Optimizations

State Merging

Example (CSV parsing): PDT that extracts the name of all female 
members from a CSV file containing "name, gender, occupation” tuples

Snapshot of generated PDT traversal code

0,1 BlockA
2-14

No optimizations

0,1

Loop Unrolling

0,1

Goals:
Ø Reduce code size
Ø Reduce control flow operations 
Ø Improve memory access patterns

Ø Advantage: control flow reduction
Ø Disadvantage: not always applicable

Ø Advantages: Loop unrolling enables more aggressive optimizations such as 
reordering of reads (from input) and writes (to output)

Ø Disadvantages: Loop unrolling increases register pressure

Stack_0 Records the “name” fields

Stack_1 Stores the cell counter

Ø Average 82x and 6x speedup over custom CPU and GPU 
implementations, respectively

Ø On CPU, highest speedup on matrix transformation (200x) and 
CSV querying (120x)

Ø On GPU, highest throughput on CSV querying (161GB/s)

User 
interface GPU codePDT IR

add_state()
add_tx(src, dst, …)
push(stack, value)
pop(stack)

States: arithmetic operation
Transitions: condition, output
Stack

I/O streams: in global memory
Stacks: in shared memory
PDT topology: code

Output “name” based on “gender” cell

Looking for “name” cell

Saving “name” cell to a stack

BlockA’: 2-14,
Read Input to Stack’
Compute on Stack’
Write Stack’ to Output

BlockA”: 2-14,
Read Input to Stack”
Compute on Stack”
Write Stack” to Output

BlockAunrolled:
2-14, 2-14
Read Input to Stack’
Compute on Stack’
Write Stack’ to Output
Read Input to Stack”
Compute on Stack”
Write Stack” to Output

Instructions Reordering

0,1
BlockAunrolled+reordered:
2-14, 2-14
Read Input to Stack’
Read Input to Stack”
Compute on Stack’
Compute on Stack”
Write Stack’ to Output
Write Stack” to Output

Stack Stores input of BlockA

Stack’ Stores input of BlockA’

Stack” Stores input of BlockA”

Replicating stack

Stack’ Stores input of 
BlockAunrolled+reordered

Stack” Stores input of 
BlockAunrolled+reordered

Stack’ Stores input of 
BlockAunrolled

Stack” Stores input of 
BlockAunrolled

https://rapids.ai/

