NC STATE UNIVERSITY

Department of Electrical and Computer Engineering

- analytics, data processing and scientific applications
- specific data transformation tasks provide efficiency but lack generality and extensibility
- transformation can benefit a broad spectrum of applications

for data transformation tasks expressed using Pushdown Transducers (PDTs)

- - stack read/write operation
- 3. Allocate stacks in shared memory
- 4. Store the remaining context information (pointers in I/O streams, active state indicator) into local variables to be stored in the register file

PDTgcomp: Compilation Framework for Data Transformation Kernels on GPU

Tri Nguyen and Michela Becchi (tmnguye7, mbecchi @ncsu.edu)

- Advantages: Loop unrolling enables more aggressive optimizations such as reordering of reads (from input) and writes (to output)
- Disadvantages: Loop unrolling increases register pressure

Experimental Setup

Transformation class	on	Input dataset	CPU Baseline	GPU Baseline
Data Enc/Dec		Cantebery Corpus	Parquet [1]	Nvidia Thrust [4]
Matrix Transformation		Texas A&M Sparse Matrix	Intel MKL [3]	Nvidia cuSparse [4]
Histogram		RDU Accident and Crime Report	GSL Histogram [2]	Nvidia Cub [4]
CSV Query		RDU Accident and Crime Report	Pandas [5]	Rapids Al [6]
System				
CPU	2x Intel Xeon E5-2630 2.2GHz			
GPU	NVIDIA TITAN XP 12GB, 30SMs			

Performance

OS/CUDA

- implementations, respectively
- CSV querying (120x)

Conclusion and Future Work

- improve performance.

References and Acknowledgement

- [1] Apache Parquet: https://parquet.apache.org
- [2] GNU scientific library: https://www.gnu.org
- dpcpp/top.html
- [4] Cuda toolkit: https://docs.nvidia.com/cuda [5] Pandas: https://pandas.pydata.org
- [6] Open GPU data science: https://rapids.al

Ubuntu 18.04, CUDA toolkit 11.7

PDTgcomp speedup over custom CPU libraries

Average 82x and 6x speedup over custom CPU and GPU

 \succ On CPU, highest speedup on matrix transformation (200x) and

 \succ On GPU, highest throughput on CSV querying (161GB/s)

> We demonstrated a method to generate efficient GPU code implementing data transformation tasks expressed using PDT > Future work encompasses more compiler optimizations to further

[3] Intel MKL: https://www.intel.com/content/www/us/en/develop/documentation/get-started-with-mkl-for-

This work was supported by National Science Foundation awards CNS-1812727 and CCF-1907863.