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Abstract

Introduction
● A Protein is a long chain of amino acid residues. This 

chain decides the overall structure of the protein. 
● MD is used to simulate folding process of proteins over 

a period of time (Fig-2).
● Each time step which is termed as a Frame, defines the 

state of the protein. The chain or collection of frames 
build a trajectory.

● Changes in factors like ph, temperature and composition 
of a solution can make a protein go through a number of 
molecular events which induce conformational changes 
in the protein trajectory.

With modern technology and High Performance Computing (HPC), Molecular 
Dynamics (MD) simulations can be task and data parallel. That means, they can be 
decomposed into multiple independent tasks (i.e., trajectories) with their own data, 
which can be processed in parallel. Analysis of MD simulations includes finding 
specific molecular events and the conformation changes that a protein undergoes. 
However, traditional analysis rely on global decomposition of all the trajectories for a 
specific molecular system, which can be performed only in a centralized way. We 
propose a lightweight self-supervised machine learning technique to analyse MD 
simulations In-Situ. That is, we aim to speedup the process of finding molecular 
events in the protein trajectory at run-time, without having to wait for the entire 
simulation to finish. This allows us to scale the analysis with the simulation.

Our Method

Evaluation and Results

 Fig 1: Structure of the 
protein and structural 

rearrangements

Conclusions 

● Our  algorithm can monitor molecular events in a protein trajectory In-Situ.
● With this knowledge, we identify different states of the protein through its trajectory. 
● Additionally, we are able to explain which residue-pairs contributed the most for a 

detected conformational change in the protein trajectory. 
● Our method is robust regardless of the type of protein, sampling rate, number of 

residues , as well as other simulation properties.
● Our method is efficient (i.e., execution per window takes a few milliseconds) and 

requires only constant memory (e.g., 50 frames at a time) 

Fig 2: Example of Frames in a trajectory with residues of interest in (top) and 
GEM encoding of residues of interest (bottom) intensity of the matrix is the 

Euclidean distance, color represents their secondary structure (red: helices, 
blue: sheets, green: coils)

We validated our results with respect to TICA and with the expected conformation 
changes determined by domain scientists. Figures 6-8 demonstrates our results for 
trajectories from Globulin and Figs 9-12 for E50K. 
Figures 6 and 10 show the states identified by our method. Colored horizontal bars 
represent states that are able to explain the data (e.g., blue is Model 0 explains the 
data, orange is Model 1, and green is Model 2). Red vertical bars indicate when a new 
state was created. Cyan vertical bars are regions of uncertainty that did not create a 
new state. Figures 7 and 11 show residue interactions that explain the detected 
molecular events. Every matrix represents the interaction between each pair of 
residues. On the left, the GEM encoding depicts changes in secondary structure. The 
middle figure highlights pairs of residue interaction that contributed the most to the 
detection of the event. Finally, the right matrix shows whether residue pairs moved 
closer (red) or farther away (blue) than expected. 
We perform performance profiling (see figure 8, 12)  to measure memory and CPU 
usage, which are in the order of kilobytes and milliseconds respectively, making our 
method ideal for lightweight in-situ analysis.

We tested our method on trajectories from different proteins and mutants listed below.

Protein #Traj #Res Residues 
of Interest # of Frames TP FP FN

Bovine 
Beta-lactoglobulin 6 162 12 2000-10000 6 2 0

Wild Type: B cell 
translocation gene 
(BTG1) mutant

23 129 8   1200-10000    20 5 2

E50K BTG1 mutan 18 129 8 1000-14000 11 3 1

R68L BTG1 mutant 6    129          8 14000 4 2 0

Opsin      1     326 21 2000 3 1 0

Globulin Trajectory 3 E50k Set 1 Trajectory 1 

● Structural Rearrangements (Fig-1), Binding Events, Protein Associations are some 
of the conformational changes.

● We use domain knowledge to determine the residues of interest ‘r’ (i.e., residues 
that will be tracked to determine if a molecular event occurs). 

Fig 4: Every state Sk comprises of k+1 
associations with previously built NMF 

models. 
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Fig 3: Block diagram explaining the main method 
For each frame we calculate the Euclidean distance 
between each pair of residues of interest and build a 
vector X of size |r|^2 * 1. We train NMF model (M0) 
with first ‘w’ frames and construct the first State (S0). 
We build a state for every new molecular event that is 
detected in the trajectory. Every state comprises of 
parameters P(Sk,Mj) associated with the “normal” 
behavior of the protein in that state. P(Sk,Mj) consists 
of running mean, running standard deviation, as well 
as the critical values for a 80% level of confidence 
(p<0.2) for a two tailed z-test. New states are built 
when the existing ones cannot explain the data.
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TICA Analysis TICA Analysis 

Analysis with Our Method Analysis with Our method

Our method shows a behavior that is consistent with TICA. But unlike TICA, the 
analysis can be performed in the same node as the simulations or run concurrently on 
a different node; saving time and computational resources. We train an ensemble of 
light-weight ML models that do not require the entire view of the protein to determine 
the relevant changes. 
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