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Evaluation and Results
We validated our results with respect to TICA and with the expected conformation

We tested our method on trajectories from different proteins and mutants listed below. changes determined by domain scientists. Figures 6-8 demonstrates our results for COI‘IC[U SIONS
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Wild Type: B cell new state. Figures 7 and 11 show residue interactions that explain the detected
translocation gene ..-.. molecular events. Every matrix represents the interaction between each pair of | ® Our algorithm can monitor molecular events in a protein trajectory In-Situ.
(BTG1) mutant residues. On the left, the GEM encoding depicts changes in secondary structure. The | ® With this knowledge, we identify different states of the protein through its trajectory.
middle figure highlights pairs of residue interaction that contributed the most to the | ® Additionally, we are able to explain which residue-pairs contributed the most for a

Fig 2: Example of Frames in a trajectory with residues of interest in (top) and -_-- detection of the event. Finally, the right matrix shows whether residue pairs moved detected contormational change in the protein trajectory. |
GEM encoding of residues of interest (bottom) intensity of the matrix is the n_n closer (red) or farther away (blg_e) than expected. ° O“T method is robust regal.’dlessiof the typ.e of protein, sampling rate, number of
Euclidean distance, color represents their secondary structure (red: helices, We perform performance profiling (see figure 8, 12) to measure memory and CPU residues , as yvell aS Othef Slmulatlon. properheg -

blue: sheets, green: coils) Onsi 1 206 o1 000 3 1 usage, which are in the order of kilobytes and milliseconds respectively, making our | ® Our method is efficient (i.e., execution per window takes a few milliseconds) and
psin method ideal for lightweight in-situ analysis. requires only constant memory (e.g., 50 frames at a time)
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