
Custom 8-bit floating point value format for reducing shared
memory bank conflict in approximate nearest neighbor search

Hiroyuki Ootomo1, Akira Naruse2

1Tokyo Institute of Technology 2NVIDIA

(Exact) nearest neighbor search is computationally enormous.
ANNS is used in information retrieval, machine learning, etc.

The search spaces are getting larger in recent years.
There are some ANNS libraries for many-core CPUs and GPUs.

Several methods are proposed: Graph-based, IVFPQ, etc.

Goal
For a given a d-dimensional query vector q, obtain k vectors V =
{xi1,xi2, · · · ,xik} from dataset vectors D = {x1,x2, · · · ,xN} where

i1, i2, · · · , ik = k-argminsi
(
|q− xi|2

)
.

Approximate Nearest Neighbor Search (ANNS)

Can compress the dataset.
⇒ Can treat a large dataset on a single device.

Can compute the norm between a query vector and a dataset vector
only by addition instructions once a norm2 fragment lookup table is
made.

Algorithm

n-bit Product Quantization

Dataset vector

Cluster centroid

residual vector

PQ vector

norm2 fragment lookup table

Query vector

PQ code book

Compressed dataset

residual vector

Only accumulation!

Compressed dataset

Train phase

Search phase Goal :

IVFPQ

The norm2 fragment lookup table is stored in shared memory.

To compute the norm between a query vector and a dataset vector, we
load the norm2 fragments from the table and accumulate them.

Problem

Loading a norm2 fragment from shared memory is a random access
through 32 threads in a warp.

⇒ Shared memory bank conflict occurs and the throughput
degrades.

Goal: Reducing shared memory bank conflict
Reduce shared memory bank conflict using low-bit floating point
representation of the norm fragments

bank 31

0 1 31

32 33 63

224 225 255

bank 0 bank 1 bank 31

0

bank 0 bank 1

1 2 3 4 5 6 7 127126125124

4 Byte 4 Byte

Storage type = FP32 Storage type = 8-bit FP

e.g. PQ dim n=8

128 129 130 131 132 133 134 135 255254253252

8

2

1 bank conflict in the worst case7 bank conflicts in the worst case

IVFPQ search on GPU

Requirements

Only for data storage. No computation between the formats.

No sign bit is needed since L2-norm is always positive.

Low overhead for converting from/to FP32.

Proposed format: e5m3 and e4m4

e e e e m m me

e e e m m mme

e e e e m m mes m m m m m mm

e e e e m m mes m m m m m mme e e m m m m m m m m mm m m mFP32 (s1e8m23)

FP16 (s1e5m10)

e5m3

e4m4

m

e

mantissa bit

exponent bit

s sign bit

Converting from FP32

0 0 0 0 0 00 1 1 1 0 0 0 0 0

0 m m m m me e e e e e e e m

- (as uint32)

e e e e m m me
>> 20

FP32 (interpret as uint32)

e5m3

exponent bias

(*) Check underflow before converting

Converting to FP32

e e e e m m m

0 0 0 0 0 0

<< 20

+ (as uint32)

interpret as FP32

e5m3 e

1

rounding trick

0 1 1 1 0 0 0 0

exponent bias

Representation range and accuracy

2 20 2 13 2 6 21 28 215

Representable range

10 4

10 2

100

Re
pr

es
en

ta
tio

n
ac

cu
ra

cy

be
tte

r

fp16 e5m3 e4m4

While the representation
accuracy of e4m4 is not
significantly better than
e5m3, representable
range is only half.
⇒ We use e5m3.

Custom 8-bit floating point format for norm representation

recall = |V ∩VGT|/|VGT|,
where VGT is the set of the ground
truth for the query.

The accuracy of ANNS

AMD Ryzen 9 5900X

NVIDIA GeForce RTX 3080Ti

CUDA 11.7

Environment

BIGANN 100M dataset (d = 128, s = 64, data type = uint8)

0.750 0.775 0.800 0.825 0.850 0.875 0.900 0.925
Recall @100

104

105

Qu
er

y
pe

r s
ec

on
d better(*)=32

64
128

256
512

1024float half e5m3

Yandex DEEP 100M dataset (d = 96, s = 48, data type = float)

0.78 0.80 0.82 0.84 0.86 0.88 0.90
Recall @100

104

105

Qu
er

y
pe

r s
ec

on
d

better
(*)=32

64

128

256
512

1024float half e5m3

Parameters

(*) num probes : The number of clusters picked up in the first stage
of the search phase.

num clusters : 100,000

batch size : 10,000

PQ bit : n = 8

Evaluation

We have developed custom 8-bit floating point formats for reducing
bank conflict in IVFPQ on GPU.

The sign bit is omitted.
It can be converted from/to FP32 with a few operations.

We have applied it to IVFPQ and improved the throughput with a
little recall degradation.

Conclusion

