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(Exact) nearest neighbor search is computationally enormous.
ANNS is used in information retrieval, machine learning, etc.

The search spaces are getting larger in recent years.
There are some ANNS libraries for many-core CPUs and GPUs.

Several methods are proposed: Graph-based, IVFPQ, etc.

Goal
For a given a d-dimensional query vector q, obtain k vectors V =
{xi1,xi2, · · · ,xik} from dataset vectors D = {x1,x2, · · · ,xN} where

i1, i2, · · · , ik = k-argminsi
(
|q− xi|2

)
.

Approximate Nearest Neighbor Search (ANNS)

Can compress the dataset.
⇒ Can treat a large dataset on a single device.

Can compute the norm between a query vector and a dataset vector
only by addition instructions once a norm2 fragment lookup table is
made.

Algorithm
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The norm2 fragment lookup table is stored in shared memory.

To compute the norm between a query vector and a dataset vector, we
load the norm2 fragments from the table and accumulate them.

Problem

Loading a norm2 fragment from shared memory is a random access
through 32 threads in a warp.

⇒ Shared memory bank conflict occurs and the throughput
degrades.

Goal: Reducing shared memory bank conflict
Reduce shared memory bank conflict using low-bit floating point
representation of the norm fragments
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IVFPQ search on GPU

Requirements

Only for data storage. No computation between the formats.

No sign bit is needed since L2-norm is always positive.

Low overhead for converting from/to FP32.

Proposed format: e5m3 and e4m4
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Representation range and accuracy
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While the representation
accuracy of e4m4 is not
significantly better than
e5m3, representable
range is only half.
⇒ We use e5m3.

Custom 8-bit floating point format for norm representation

recall = |V ∩VGT|/|VGT|,
where VGT is the set of the ground
truth for the query.

The accuracy of ANNS
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Yandex DEEP 100M dataset (d = 96, s = 48, data type = float)
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Parameters

(*) num probes : The number of clusters picked up in the first stage
of the search phase.

num clusters : 100,000

batch size : 10,000

PQ bit : n = 8

Evaluation

We have developed custom 8-bit floating point formats for reducing
bank conflict in IVFPQ on GPU.

The sign bit is omitted.
It can be converted from/to FP32 with a few operations.

We have applied it to IVFPQ and improved the throughput with a
little recall degradation.

Conclusion


