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INTRODUCTION  
Appropriately adjusting the power draw of computational hardware plays a crucial role in its efficient use. While 
vendors have already implemented hardware-controlled power management, additional energy savings are 
available, depending on the state of the machine. We propose the online classification of such states based on 
computationally informed machine learning algorithms to adjust the power cap of the next time step. This 
research highlights that the overall energy consumption can be reduced significantly, often without a prohibitive 
penalty in the runtime of the applications.

Haidar et al. proved that the power consumption can be reduced by setting the power cap with minimal or no 
loss of performance when the system runs memory-bound codes. However, automated approaches are required 
for online power capping in production. 

Fig. 1: Power capped energy savings on Intel Cascade Lake.

Idealized Power Delay Profile (PDP)

 

IMPLEMENTATION
● Online power capping
● x86 64 Bit, accelerators pending
● Readily available hardware counters, traced with 5 Hz
● Socket-wide power capping with on-package classification

We observed a latency of power limit enforcement in the regime of tp, lim = 0.15 s 
depending on the power step ΔP. Therefore, the short term power limit “B” is 
not adjusted. A reasonable compromise of fidelity and prediction overhead was 
found in the 1.5 s interval of 0.5 ≤ ti, cl ≤ 2.0 [s].

Fig. 3: Components of the online power capping with machine learning.

COMPUTATIONALLY INFORMED, 
SOFTWARE AGNOSTIC
A processor’s state is recognizable by tracing hardware events, hence 
computationally informed algorithms. State change estimates depend on the 
operation performed and its problem size, so software-aware approaches will 
lead to even higher energy savings. 

HARDWARE SIGNATURES
Power signatures like fig. 4 show a comparable architectural behavior when in a 
memory-bound state for a wide range of applications. 

The compute power of an instance Pi, c is given as Pi, p - Pi, m and expected to 
depend on the operational intensity. This connects the compute power with the 
power of the memory Pi, m. If the system is memory-bound and the operational 
intensity is constant, a steady state hardware energy signature like shown in fig. 
4 is to be assumed. Other factors the signatures might depend on:

● Type of operations (Single precision, Double precision, Integer, … )
● Communication
● Temperature of the package
● Core count of the package

Fig. 4: Hardware energy signature for memory-bound states.

MEASURING TRAINING DATA FOR THE MACHINE LEARNING CLASSIFIER

                                              Fig. 2: Kernels, wattage ranges, and hardware counters used for the self-supervised training of the sktime TimeSeriesForestClassifier with n_estimators=25.

UTILITY FUNCTIONS
We assign a label li for self-supervised learning to the training instances ‘i’ 

to identify whether a system is compute- or memory-bound. Subsequent 

adjustments of the package power limit of the next instance Pi+1, p, lim of eq. 2 

depend on the compute power scaled by the ratio of the memory power of 

the current instance Pi, p, a of eq. 1, the known variables and the labels li. 

RESULTS

\

Fig. 5: The energy consumption of software with haircomb- or other power pattern can be 
reduced significantly by online power capping. 

Fig. 6: Online power capping for XSBench. The impact on software that exhibits a steady 
state power draw is negligible.

PERFORMANCE OVERHEAD 

Fig. 7: The Python-based ML prediction induces a small overhead that might be reduced by a 
hardware implemented classifier firmware.

 

Fig. 8: The overheads for XSBench and Jacobi in fig. 7 are of the same magnitude.

OUTLOOK 
We suggest the following use-cases and scenarios for online power capping:

● Different architectures and core counts to be implemented.
● Adjusting the target power of a running program for computers to meet a 

changing compute-center wide power target.
● Minimizing energy consumption for temporally uncritical applications.
● Wall-time aware energy savings.
● Energy saving on not fully utilized clusters.
● Energy savings by power capping memory. 

Further considerations:

● High sampling rates improve the fidelity of power capping.
● Identifying more complex patterns within time series of counters.
● Chiplet- or cluster-wide approaches based on machine learning may enhance 

hardware signature and load balancing.

LIMITS 
● Complex classifiers significantly increase the overhead of prediction.
● Non-x86 architectures to be implemented.
● The approach (currently) is limited to memory-bound states. 
● Hardware counters may require root permissions.

CLASSIFIER FIRMWARE
Power capping is very specific to a given configuration of a hardware 
architecture, but it shows a consistent behavior in memory-bound situations.

Our approach is a software agnostic one and we recommend an on-package 
classifier firmware like shown in fig. 9 which is based on fig. 2 to minimize the 
overhead of classifying the time series of the performance counters. 

Fig. 9: Integrating the classifier as an on-package feature.

CONCLUSION 
Online Power Capping by Computationally Informed Machine Learning can 
reduce power and energy consumption with Minimal to no loss in runtime.                                                                  
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