
● Sparse deep neural networks provide unique
challenges and opportunities. We pursue this with
Apache TVM, a machine learning compiler framework
for various computer architectures.

● TVM's scheduling and tuning optimizations
improve upon the baseline and shows promise
compared to other sparse libraries.

● Further research may be done to apply TVM's
autoTVM or AutoScheduler to tune the inference,
explore TVM's accommodations for other Python
machine learning libraries such as Pytorch and
TensorFlow, or learn how to optimize multiplication
algorithm for multiplication between two sparse
matrices

● For CPU, our TVM implementation achieves a 1.6x
speed up over the benchmark code in matlab.

● The sparse library outperforms our TVM implementation
in CPU by 1.1x. However, our algorithm for TVM is very
basic compared the algorithm provided by the sparse
library, and our TVM implementation is still able to
compensate for the deficiencies with our partitioning a
scheduling optimizations.

● In GPU, we achieve a 1.6x speed up over our sparse
library implementation, indicating TVM’s potential for
efficient architecture usage.

● GPU runtime is most efficient with 64 partitioned blocks

Methodology

Results

Problem Definition
Input:

● weight matrices Wl
● MNIST sparse input data Y0
● bias vector Bl
● truth categories

Inference: For each layer, we compute the next using:
Yl+1 = ReLU(Yl×Wl+Bl)

Results:
● time equation for each pass,
● check for accuracy with truth categories
● compute rate for inference using:
(number of inputs) × (number of connections) ÷ (time)

References

Efficient Sparse Deep Neural Network Computation on GPU with TVM

Conclusions

Lillian Wang, Avik Malladi, Yuede Ji
Department of Computer Science and Engineering, University of North Texas

ffd

Motivation

Key Findings

Layers Edges CPU
Time (s)

CPU
Edges/Secon

d

GPU
Time (s)

GPU
Edges/Secon

d

TVM
MATLAB

Sparse library
120 3,932,160

46.19
72.42
43.09

5.11 e+09
3.26 e+09
5.48 e+09

42.56

68.99

5.55 e+09

3.42 e+09

TVM
MATLAB

Sparse library
480 15,728,640

184.07
289.61
163.13

5.13 e+09
3.26 e+09
5.79 e+09

172.91

275.97

5.46 e+09

3.42 e+09

TVM
MATLAB

Sparse library
1920 62,914,560

733.46
1220.09
658.55

5.15 e+09
3.09 e+09
5.73 e+09

717.60

1105.53

5.26 e+09

3.41 e+09
Table 1. Single CPU and GPU performance for the deep neural network computation with 1024 neurons and
varying layer size.

Benefits of using SpDNN:
● pruning DNNs increases sparsity and improves

generalization results
● High sparsity (more zeros) results in high potential for

more efficient storage and computation.
○ compatible with devices with low processing power

Challenges with SpDNN’s:
● Most current developments do not accommodate high

sparsity and are thus inefficient
● Dense DNNs more easily use information like

historical statistics or previous predictions to define
features/connections than sparse DNNs.

● Most current SpDNNs are built using C++ and CUDA
rather than python which TVM uses

● Sparse Deep Neural Networks (SpDNNs) provide
unique scalability difficulties in which optimizations and
advancements can be made [1].

● Apache TVM [2] is a machine learning compiler
framework for CPUs and GPUs which has shown
promising improvements in the optimizations of
networks [3].

● To evaluate its effectiveness, this work presents GPU
optimizations using Apache TVM for SpDNNs.

Introduction

Our implementation has two main parts:
TVM Tensor Expression. TVM’s TE, a namespace that TVM’s optimizations build off of,
is used to write the inference function through te.compute and related functions
● Code may be written with PyTorch, TensorFlow, etc. before converting to an IR Module

Scheduling. We use TE and TVM Relay, a namespace containing the Intermediate
Representation (IR) definition and compiler, to partition each layer into equal sizes and
use TVM’s built in scheduling functions to parallelize the partitions in CPU and GPU.
● Low-level IR. We convert the model into a low-level IRModule using Relay. The

second code block in figure 2 is the generated IRModule script, which is more
○ Further optimizations on the module may be made during this step

● Runnable Module. This is the final compiled module. The input parameters for the
module are the input tensors and the output tensors.

Experimental Setup
Component Type Component
Server Runs Rocky Linux 8.6 with hyper-threading enabled
CPU Intel Xeon Silver 4309Y CPU containing 8 cores
GPU A40 NVIDIA GPU with 48GB running CUDA Toolkit 11.7

Figure 2. This figure provides an overview of our TVM implementation.

[1] Mauro Bisson and Massimiliano Fatica. 2019. A GPU
implementation of the sparse deep neural network graph
challenge. In 2019 IEEE High Performance Extreme
Computing Conference (HPEC). IEEE, 1–8.

[2] Chen, Tianqi, Thierry Moreau, Ziheng Jiang, Lianmin
Zheng, Eddie Yan, Haichen Shen, Meghan Cowan et al.
"{TVM}: An automated {End-to-End} optimizing compiler
for deep learning." In 13th USENIX Symposium on
Operating Systems Design and Implementation (OSDI
18), pp. 578-594. 2018.

[3] Hu, Yuwei, Zihao Ye, Minjie Wang, Jiali Yu, Da Zheng,
Mu Li, Zheng Zhang, Zhiru Zhang, and Yida Wang.
"Featgraph: A flexible and efficient backend for graph
neural network systems." In SC20: International
Conference for High Performance Computing,
Networking, Storage and Analysis, pp. 1-13. IEEE, 2020.

Figure 1. This figure describes the difference between sparse and
dense DNNs

