
● Sparse deep neural networks provide unique 
challenges and opportunities. We pursue this with 
Apache TVM, a machine learning compiler framework 
for various computer architectures. 

● TVM's scheduling and tuning optimizations 
improve upon the baseline and shows promise 
compared to other sparse libraries. 

● Further research may be done to apply TVM's 
autoTVM or AutoScheduler to tune the inference, 
explore TVM's accommodations for other Python 
machine learning libraries such as Pytorch and 
TensorFlow, or learn how to optimize multiplication 
algorithm for multiplication between two sparse 
matrices

● For CPU, our TVM implementation achieves a 1.6x 
speed up over the benchmark code in matlab.

● The sparse library outperforms our TVM implementation 
in CPU by 1.1x. However, our algorithm for TVM is very 
basic compared the algorithm provided by the sparse 
library, and our TVM implementation is still able to 
compensate for the deficiencies with our partitioning a 
scheduling optimizations.

● In GPU, we achieve a 1.6x speed up over our sparse 
library implementation, indicating TVM’s potential for 
efficient architecture usage.

● GPU runtime is most efficient with 64 partitioned  blocks

Methodology

Results

Problem Definition
Input:

● weight matrices Wl
● MNIST sparse input data Y0 
● bias vector Bl
● truth categories

Inference: For each layer, we compute the next using:
Yl+1 = ReLU(Yl×Wl+Bl)

Results:
● time equation for each pass,
● check for accuracy with truth categories
● compute rate for inference using:
(number of inputs) × (number of connections) ÷ (time)
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Layers Edges CPU 
Time (s)

CPU 
Edges/Secon

d

GPU 
Time (s)

GPU 
Edges/Secon

d

TVM
MATLAB

Sparse library
120 3,932,160

46.19
72.42
43.09

5.11 e+09
3.26 e+09
5.48 e+09

42.56

68.99

5.55 e+09

3.42 e+09

TVM
MATLAB

Sparse library
480 15,728,640

184.07
289.61
163.13

5.13 e+09
3.26 e+09
5.79 e+09

172.91

275.97

5.46 e+09

3.42 e+09

TVM
MATLAB

Sparse library
1920 62,914,560

733.46
1220.09
658.55

5.15 e+09
3.09 e+09
5.73 e+09

717.60

1105.53

5.26 e+09

3.41 e+09
Table 1. Single CPU and GPU performance for the deep neural network computation with 1024 neurons and 
varying layer size.

Benefits of using SpDNN:
● pruning DNNs increases sparsity and improves 

generalization results
● High sparsity (more zeros) results in high potential for 

more efficient storage and computation.
○ compatible with devices with low processing power

Challenges with SpDNN’s:
● Most current developments do not accommodate high 

sparsity and are thus inefficient
● Dense DNNs more easily use information like 

historical statistics or previous predictions to define 
features/connections than sparse DNNs.

● Most current SpDNNs are built using C++ and CUDA 
rather than python which TVM uses

● Sparse Deep Neural Networks (SpDNNs) provide 
unique scalability difficulties in which optimizations and 
advancements can be made [1].

● Apache TVM [2] is a machine learning compiler 
framework for CPUs and GPUs which has shown 
promising improvements in the optimizations of 
networks [3]. 

● To evaluate its effectiveness, this work presents GPU 
optimizations using Apache TVM for SpDNNs.

Introduction

Our implementation has two main parts:
TVM Tensor Expression. TVM’s TE, a namespace that TVM’s optimizations build off of, 
is used to write the inference function through te.compute and related functions
● Code may be written with PyTorch, TensorFlow, etc. before converting to an IR Module

Scheduling. We use TE and TVM Relay, a namespace containing the Intermediate 
Representation (IR) definition and compiler, to partition each layer into equal sizes and 
use TVM’s built in scheduling functions to parallelize the partitions in CPU and GPU.
● Low-level IR. We convert the model into a low-level IRModule using Relay. The 

second code block in figure 2 is the generated IRModule script, which is more 
○ Further optimizations on the module may be made during this step

● Runnable Module. This is the final compiled module. The input parameters for the 
module are the input tensors and the output tensors. 

Experimental Setup
Component Type Component
Server Runs Rocky Linux 8.6 with hyper-threading enabled
CPU Intel Xeon Silver 4309Y CPU containing 8 cores
GPU A40 NVIDIA GPU with 48GB running CUDA Toolkit 11.7

Figure 2. This figure provides an overview of our TVM implementation.
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Figure 1. This figure describes the difference between sparse and 
dense DNNs


