
VkFFT – Vulkan/CUDA/HIP/OpenCL/Level Zero GPU FFT library
Dmitrii Tolmachev1

1 EPM Group, ETH Zurich, Switzerland, dmitrii.tolmachev@erdw.ethz.ch

VkFFT is an efficient GPU-accelerated multidimensional Fast Fourier Transform library for

Vulkan/CUDA/HIP/OpenCL/Level Zero projects. VkFFT aims to provide the community with a

cross-platform open-source alternative to vendor-specific solutions while achieving

comparable or better performance. VkFFT is released under MIT license.

2 Theory

9 Discrete Cosine Transforms (R2R)

7 AMD MI250 Performance

6 Nvidia A100 Performance1 Introduction 4 VkFFT library design and API

• 1D/2D/3D systems, forward and inverse directions of FFT.

• Support for big FFT dimension sizes: (2^32, 2^32, 2^32)

• Radix-2/3/4/5/7/8/11/13 FFTs and composite radix kernels.

• New: Rader’s and Bluestein's FFT algorithms for all other sequences.

• Single, double and half-precision support.

• Complex to complex (C2C), real to complex (R2C), complex to real (C2R) transformations

• New: real to real (R2R) Discrete Cosine Transformations of types I, II, III and IV.

• Convolutions and cross-correlations.

• Native zero padding to model open systems.

• Works on Nvidia, AMD, Intel, Apple and mobile GPUs. And Raspberry Pi GPU.

• Works on Windows, Linux and macOS.

• VkFFT supports Vulkan, CUDA, HIP, OpenCL and Level Zero as backends.

3 VkFFT functionality

Discrete Fourier Transform is defined as:

𝑋𝑘 = ෍

𝑛=1

𝑁−1

𝑥𝑛 𝑒
−
2𝜋𝑖
𝑁 𝑛𝑘

The fastest known algorithm for evaluating the DFT is known as

Fast Fourier Transform. The Cooley-Tukey algorithm reformulates

a composite size DFT 𝑁 = 𝑁1·𝑁2 as a combination of two DFTs:

1. Perform 𝑁1 DFTs of size 𝑁2 - radix of transformation

2. Perform O(N) multiplications by twiddle factors - complex roots

of unity defined by the radix

3. Perform 𝑁2 DFTs of size 𝑁1

Recursively applying the algorithm, FFT can be done with a

collection of small prime radix routines, written explicitly.

VkFFT uses a Stockham autosort version of the FFT algorithm,

that has a better data-access pattern for GPUs by shuffling data

between threads at each step instead of a single initial bit-reversal.

If a DFT has a prime radix that has no explicit routine (which is the

case for big primes numbers), the Rader’s FFT algorithm is used,

calculating arbitrary prime radix as a 𝑃 − 1 length convolution,

using convolution theorem: DFT 𝑓 ∗ 𝑔 = DFT 𝑓 · DFT 𝑔

If 𝑃 − 1 is not decomposable as small primes (which is the case for

Sophie Germain primes) Bluestein’s FFT algorithm is used:

1. Pad sequence with zeros to a size of at least 2𝑁 − 1, that can

be decomposed with supported prime radix kernels

2. Perform a convolution with a precomputed Bluestein’s kernel

GPUs employ a wide range of memory types to achieve high bandwidth and FLOPS.

FFT is an extremely global memory bandwidth-limited algorithm, which means

having two global memory data round trips instead of one often decreases

performance by a factor of two. VkFFT incorporates the following techniques to

reduce memory transfers:

• All FFT sequences that can fit in shared memory are done as a single upload

from global memory. Including all advanced FFT algorithms, like

Rader’s/Bluestein’s algorithms.

• Big sequences use the four-step FFT algorithm – the sequence is split into two

(three for even bigger sizes) uploads with an inlined twiddle multiplication.

• VkFFT does multiple small FFTs at once – increases thread block size and

allows to access continuous blocks of memory.

• VkFFT does not have a transposition for the strided FFT axes – they are done

by coalescing the neighboring sequences. Strided FFTs are done in a single

upload/download, just like non-strided FFTs.

• Zero padding support - VkFFT can omit sequences full of zeros and do not

perform the corresponding memory transfers and computations, as the output

result will be zero. This way it is possible to get up to two times the speed

increase in the 2D case and up to 3x increase in the 3D case.

• Removing additional last forward FFT/first inverse FFT memory requests for

convolutions by inlining kernel multiplication in the generated code. Removes

one data round-trip.

• VkFFT utilizes R2C/C2R Hermitian symmetry properties. Reduces calculations

and data transfers by a factor of two.

• All R2R pre- and post-processing are inlined in the FFT algorithm.

This project has received funding from the European

Research Council under the European Union’s Horizon

2020 research and innovation programme grant

agreement No 833848 (UEMHP) and from The Swiss

National Supercomputing Centre's PASC initiative

supporting the AQUA-D software development project.

10 Conclusions 11 Financial support

8 Precision verification

The test configuration takes multiple 1D FFTs of all lengths from the 2 to 4096 range, batches them

together so the full system takes ~ 500MB to 1GB of data and performs multiple consecutive FFTs.

After that, time per single FFT is obtained by averaging the result. Total system size is divided by

the time taken by a single transform, resulting in the achieved bandwidth. The peak global memory

bandwidth of A100 is ~1.3TB/s.

Tests are performed in double (left) and single (right) precision.

We compare the VkFFT performance against Nvidia’s cuFFT on Nvidia A100 HPC GPU (40GB, 250W, P0 profile, CUDA 11.7)

For double precision, both VkFFT and cuFFT use radix

decomposition for sequences representable as a multiplication

of arbitrary number of primes up to 13.

Both VkFFT and cuFFT have Rader’s algorithm

implementation. VkFFT uses FFT version of it for sequences

decomposable as a multiplication of primes up to 4096 (if P-1

FFT can be done with the first algorithm). cuFFT only uses

Rader’s algorithm for primes up to 127 and implements it as a

direct matrix multiplication.

In both codes Bluestein’s algorithm is used for all other

sequences - Sophie Germain primes and their multiples for

VkFFT and primes after 128 and their multiples for cuFFT.

For single precision, VkFFT uses the same algorithm

configuration, as for double precision (radix+Rader+Bluestein).

cuFFT does not use Rader’s algorithm in FP32 and switches to

Bluestein’s algorithm for primes after 17. Rader’s algorithm

implementation in VkFFT works just as well in FP32 as in FP64.

In Bluestein’s algorithm VkFFT has an option to manually

decide to which sequence to pad for the best per-GPU

performance.

Overall, for both FP32 and FP64, VkFFT has better coverage

for radix (2-13) decomposition, better Bluestein’s algorithm

performance and better Rader’s algorithm prime coverage and

performance.

We compare the VkFFT performance against AMD’s rocFFT on AMD MI250 HPC GPU (64GB, 250W, single-chip, ROCm 5.2)

The test configuration is the same as for the Nvidia A100 GPU above. The peak global memory bandwidth of MI250 is ~1.3TB/s.

For double precision, VkFFT uses similar to A100

configuration: radix decomposition for primes up to 13, Rader-

FFT algorithm for non-Sophie Germain primes up to 4096,

Bluestein’s algorithm for other sequences.

Due to the smaller size of available shared memory compared

to A100 (64KB vs 192KB), VkFFT has to switch to double-

upload scheme for Bluestein’s algorithm after 2048 in FP64

and 4096 in FP32, reducing effective bandwidth up to 2x.

For single precision, both VkFFT and rocFFT have patterns

similar to double precision.

VkFFT achieves close to peak bandwidth for radix

decomposition, only limited by less refined architecture

(compared to A100), which is harder to optimize for.

rocFFT does not have Rader’s algorithm implementation.

VkFFT has ~2-4x faster Bluestein’s algorithm implementation.

Discrete Cosine Transforms are defined as:

▪ DCT-I: 𝑋𝑘 = 𝑥0 + −1 𝑘𝑥𝑁−1 + 2σ𝑛=1
𝑁−2 𝑥𝑛 𝑐𝑜𝑠

𝜋

𝑁−1
𝑛𝑘

▪ DCT-II: 𝑋𝑘 = 2σ𝑛=1
𝑁−1 𝑥𝑛 𝑐𝑜𝑠

𝜋

𝑁
𝑛 +

1

2
𝑘 , inverse of DCT-III

▪ DCT-IV: 𝑋𝑘 = 2σ𝑛=1
𝑁−1 𝑥𝑛 𝑐𝑜𝑠

𝜋

𝑁
𝑛 +

1

2
𝑘 +

1

2

• No existing fast GPU DCT library before.

• Implemented as a mapping between DCT and a regular Fourier transform of a

similar length, performed with VkFFT.

• Mapping is done in shared memory as a part of a generated FFT kernel with no

additional global memory transfers.

• The same 𝑂(𝑙𝑜𝑔𝑁) accuracy scaling as FFTW.

The test configuration is the same as for the C2C in double precision. We

compare the performance of AMD EPYC 7742 (64 cores) CPU with threaded

FFTW with Nvidia A100 and AMD MI250 GPUs with VkFFT.

The high bandwidth of GPU memory allows to greatly outperform CPU

implementation in FFTW.

VkFFT precision is verified by comparing its results with FP128 version of FFTW. We test all FFT lengths from the

[2, 100000] range. We perform tests in single and double precision on random input data from [-1;1] range.

For both precisions, all tested libraries exhibit logarithmic error scaling. The main source of error is imprecise twiddle factor

computation – sines and cosines used by FFT algorithms. For FP64 they are calculated on the CPU either in FP128 or in

FP64 and stored in the lookup tables. With FP128 precomputation (left) VkFFT is more precise than cuFFT and rocFFT.

For FP32, twiddle factors can be calculated on-the-fly in FP32 or precomputed in FP64/FP32. With FP32 twiddle factors (right)

VkFFT is slightly less precise in Bluestein’s and Rader’s algorithms. If needed, this can be solved with FP64 precomputation.

VkFFT GitHub:

• Developed an open-source, cross-platform, optimized GPU FFT

library VkFFT.

• VkFFT matches in performance with Nvidia’s cuFFT library on

Nvidia GPUs for small sequences and outperforms it on big ones.

• VkFFT outperforms AMD’s rocFFT library.

• VkFFT has logarithmic error scaling as other FFT implementations

• First performant implementation of DCTs on GPUs.

• VkFFT is available on GitHub: https://github.com/DTolm/VkFFT

VkFFT has a hierarchical structure design: Application  Plan  Code. This allows to make code

optimizations for the target device architecture at runtime. Multiple levels of kernels that can be merged and

reused. Below a more detailed description of the VkFFT platform structure is given.

The platform will soon be released as a standalone project with VkFFT being a part of its kernel collection. With

it, it will be possible to inline VkFFT in the user’s kernels, reducing memory transfers even more.

Application manager

Input configuration, calls for plans' initialization and dispatch, binaries and resources management. Can

contain multiple plans. User interacts with VkFFT through the application.

Plan manager

Optimization of parameters (example: number of threads, shared memory, LUT allocation) for a particular

task and GPU architecture, calls for code generation and compilation.

Code manager

GPU kernel code generation. Produces a single kernel for the task defined by the plan manager.

Level 2 kernels

A clear description of the problem via a sequence of calls to lower levels, kernel layout configuration.

Level 0 kernels

Memory management, basic math functions inlining, subgroup functions, API-dependent definitions.

Level 1 kernels

Simple routines: matrix-vector multiplication, FFT, pre- and post-processing, R2C/R2R mappings.

5 Memory management techniques implemented in VkFFT

https://github.com/DTolm/VkFFT

