
Results

Using Umpire’s Coalescing Heuristics to Improve Memory Performance
Kristi Belcher, David Beckingsale, Marty McFadden

Lawrence Livermore National Laboratory, Livermore, CA, USA

Background

Figure 1: When a new allocation is added to an Umpire pool, it will either
readjust to accommodate it (with coalescing) or simply grow larger
(without coalescing).

The performance of memory pools in scientific applications varies widely depending upon
how blocks of memory within the pool are managed. The Umpire team from Lawrence
Livermore National Laboratory (LLNL) studied a high-explosive chemistry application and
conducted experiments to study different ways to manage blocks of memory within the
pool. Our study demonstrates that with the right heuristic we can see memory savings up to
64% which, for this code, translated to an 8-16x speedup.

Table 1: Number of coalesce calls compared to the
percentage of memory overhead shows a tradeoff for a
variety of Blocks-Releasable heuristic functions. Most
Percent-Releasable heuristics resulted in time outs.

LLNL-POST-838469

Used Free Blocks
New Allocation

Current Pool

With coalesce

Without coalesce

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory. 

Experiments

Conclusions and Future Work

Figure 3: The overall trends with the number of
coalesce calls plotted against the peak memory usage
remains consistent throughout all Blocks-Releasable
experiments. The box represents a sweet spot range.

• To handle new allocations, a coalesce 
function deallocates any unused blocks in the 
pool and reallocates one large block instead 
(Fig. 1).
• Umpire’s heuristics help tune the coalesce 

function to better manage the blocks within a 
memory pool. 

Experiments performed by the Umpire Team to test how different coalescing heuristics
affect Umpire’s memory pool performance:

1. Bytes-Based (Percent-Releasable) heuristic: once a certain percentage of bytes is releasable, coalesce 
the pool. Testing 50%, 75%, 90%, and 100% of bytes.

2. Blocks-Based (Blocks-Releasable) heuristic: once a certain number of blocks is releasable, coalesce 
the pool. Testing 2, 3, 5, 7, and 12 blocks.

3. High-WaterMark (HWM) heuristic tuning: when a coalesce is needed, coalesce to the high-
watermark instead of the actual size of the pool.

4. Coalesce-Before-Growing (CBG) heuristic tuning: check to see if a coalesce is needed as the pool 
grows instead of after deallocation.

Figure 4: The amount of memory used with the Blocks-
Releasable heuristic experiments tuned at Coalesce-Before-
Grow (dashed/dotted lines) compared to the Percent-
Releasable heuristic from Fig. 2 (solid line) shows a big
improvement.

• Unused blocks of memory within a pool are much less
likely to occur if different types of memory allocations
are separated into distinct pools.

• Future work will include further study into how
coalescing functions impact other application codes.

• Additional future work involves studying ways to
separate different types (temporary and permanent) of
allocations automatically using decision models.

• As the number of blocks required to 
coalesce increases from 2 to 12, the 
number of total coalesce calls decreases 
and the peak memory usage (memory 
overhead) increases (Fig. 3).
• The sweet spot is a range of values that is 

not too expensive in terms of both the 
number of coalescing calls and total 
memory used. 

Figure 2: The memory pool, using the
previous Percent-Releasable heuristic,
grew too large and caused the chemistry
application to crash, running out of
memory prematurely.

• Umpire (developed at LLNL) provides memory pools which allow a less expensive way to 
allocate all needed memory for HPC applications, compared to device specific APIs.

• If the pool can’t coalesce successfully, 
it can grow too large (Fig. 2). 
• The coalesce function can be an 

expensive operation because it 
involves memory (de/re)allocation.

• The Blocks-Releasable heuristic with the 
Coalesce-Before-Grow tuning represented 
the best results for this application. 
• From all our Blocks-Releasable experimental 

results, we saw a 36-64% reduction in total 
memory usage (Fig. 4).
• These memory savings translated to 8-16x 

speedup for this application.

• The Percent-Releasable (100%) heuristic 
was worst at 73% memory overhead 
(Table 1). 

• Effectively managing blocks of memory
within a memory pool with Umpire's
coalescing heuristics can dramatically
improve overall memory pool performance.

• The Blocks-Releasable heuristic worked
better because it was able to successfully
trigger the coalesce function when the
memory pool needed to readjust.

• After applying the Blocks-Releasable
heuristic to our chemistry application, it
used 36-64% less total memory and had
an 8-16x speedup.

Learn More!

Scan the QR code to see our 
GitHub branch with experiments 
and reproducibility instructions.

Clone Umpire:
https://github.com/LLNL/Umpire

Contact the Umpire Team:
umpire-dev@llnl.gov


