
Visual Analysis on the Resilience of HPC Applications
Hailong Jiang 1 Shaolun Ruan 2 Yong Wang 2 Bo Fang 3 Kevin Barker 3 Ang Li 3 Qiang Guan 1

1Kent State University 2Singapore Management University 3Pacific Northwest National Laboratory

Motivation

The resulting resilience characteristics of a series of program states can be
scattered, lacking a holistic view for the users;
To classify and summarize the unstructured resilience-related data
generated by those approaches requires enormous efforts for large-scale
HPC applications;
There is no platform to post-analyze the results from different resilience
frameworks.

VISILIENCE Overview

HPC Programs

Trident

IPAS

Y-Branch

Resilience Analysis

execute

Model Execution Data Generation Visualization Construction

Function ID

Label

Nodes Edges

Node ID
Name

Label Shape

Edge ID
Source
Target Color Edge ID

Name

Weight

Function1

Function2

Function3

Function4

Function5

Function6 Function Graph

Function View

Figure 1. An overall overview of Visilience
(A) Three resilience
analysis models in
Resilience Analysis part:
Trident [2], IPAS [1]
and Y-Branch [3];

(B) Data Generation
part generate CFG data ,
and encodes the
resilience analysis results
into a unified format;

(C) Visualization Engine
takes the formatted data
and CFG data as input
and outputs an
interactive visual
interface of the resilience
analysis results.

Data Generation

Figure 2. CFG json data Figure 3. Resilience analysis json
data

Data Generation (Cont.)

The Three analysis models above analyze resilience on different levels and
output three data formats. The Data Transformer part encodes the resilience
analysis result to a unified format shown in Figure 2 and passes it to the
Visualization Engine.
The first line in resilience analysis json data in Figure 3 shows the unified
format of data. The “node_number” and “edges” are the same as those in
Figure 4 (a). The “label” and “value” of each elements are the Data Interface
between Data Transformer and Visualization Engine.

Visual Encoding

401300

401310 40131a

401300

401310 40131a

401300

401310 40131a

401300

401310 40131a

CFG Y-Branch

IPAS Trident

0.60.4

0 10.5

RSOC Value
Threshold: 0.5

Not Y-Branch

Y-Branch

Above Threshold

Below Threshold

Basic Block

Dynamic Execution 
Count

SDC Probability

1 100

Figure 4. Visual encoding diagrams

CFG
Nodes: Basic Blocks
Edges: Control Flows

Y-Branch
Nodes: Green/Red -> Y-Branch/not
Edges: Control Flow

IPAS
Nodes: Darkness -> Rates of SOC inst.
Edges: Control Flow

Trident
Nodes: Basic Blocks
Edges: Control Flow
Weights: SDC probability

Interface andWeb link

C

B

A

D

Interface

Figure 5. The interface of
Visilience

A Function view is a series of dots at
top represent the functions;
B The graph is shown in the Graph
view and the nodes are basic blocks;
C Weight threshold is used to set the
weight threshold;
D The functions with specific names
are listed in Function List.

Figure 6. The web link of Visilience

Case Study

Detailed Graph

Trident ModelA IPAS ModelB Y-Branch ModelC

Figure 7. The snapshots of the partial view of CoMD benchmark under three
models

Trident

The weights on the
edges are the SDC prop-
agation possibilities be-
tween basic blocks. The
weight threshold bar on
the very left top can be
slid from 0 to 1.

IPS

The darkness of
the nodes represents
the SOC-generating-
instruction rate: the
darker the colour, the
higher the rate.

Y-Branch

Basic blocks in Y-
Branch node are green
or red, representing
Y-branch and non-Y-
Branch.

Conclusion

In this poster, we present Visilience, a visual resilience analysis frame-
work to show the resilience analysis results to programmers in an intuitive
way. Visilience takes the Control Flow Graph as a layout and maps the
resilience analysis data on it. Visilience conducts three resilience analy-
sis models and encodes these data into a unified data format, and visualizes
the data into an interactive interface. The Visualization Engine provides sev-
eral human-computer interactions, which help the users understand the data
better. Multiple case studies have been conducted to demonstrate the effec-
tiveness of Visilience.

References

[1] Ignacio Laguna, Martin Schulz, David F. Richards, Jon Calhoun, and Luke Olson. Ipas: Intelligent protection against silent output corruption in scientific applications. CGO 2016, 2016.

[2] G. Li, K. Pattabiraman, S. K. S. Hari, M. Sullivan, and T. Tsai. Modeling soft-error propagation in programs. In 2018 48th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN), pages 27–38, June 2018.

[3] Nicholas Wang, Michael Fertig, and Sanjay Patel. Y-branches: when you come to a fork in the road, take it. Parallel Architectures and Compilation Techniques, 2003. PACT 2003.
Proceedings. 12th International Conference on, 2003.

Kent State University Singapore Management University Pacific Northwest National Laboratory


