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Motivation

The resulting resilience characteristics of a series of program states can be
scattered, lacking a holistic view for the users;
To classify and summarize the unstructured resilience-related data
generated by those approaches requires enormous efforts for large-scale
HPC applications;
There is no platform to post-analyze the results from different resilience
frameworks.
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Figure 1. An overall overview of Visilience
(A) Three resilience
analysis models in
Resilience Analysis part:
Trident [2], IPAS [1]
and Y-Branch [3];

(B) Data Generation
part generate CFG data ,
and encodes the
resilience analysis results
into a unified format;

(C) Visualization Engine
takes the formatted data
and CFG data as input
and outputs an
interactive visual
interface of the resilience
analysis results.

Data Generation

Figure 2. CFG json data Figure 3. Resilience analysis json
data

Data Generation (Cont.)

The Three analysis models above analyze resilience on different levels and
output three data formats. The Data Transformer part encodes the resilience
analysis result to a unified format shown in Figure 2 and passes it to the
Visualization Engine.
The first line in resilience analysis json data in Figure 3 shows the unified
format of data. The “node_number” and “edges” are the same as those in
Figure 4 (a). The “label” and “value” of each elements are the Data Interface
between Data Transformer and Visualization Engine.

Visual Encoding
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Figure 4. Visual encoding diagrams
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Figure 5. The interface of
Visilience

A Function view is a series of dots at
top represent the functions;
B The graph is shown in the Graph
view and the nodes are basic blocks;
C Weight threshold is used to set the
weight threshold;
D The functions with specific names
are listed in Function List.

Figure 6. The web link of Visilience
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Figure 7. The snapshots of the partial view of CoMD benchmark under three
models

Trident

The weights on the
edges are the SDC prop-
agation possibilities be-
tween basic blocks. The
weight threshold bar on
the very left top can be
slid from 0 to 1.

IPS

The darkness of
the nodes represents
the SOC-generating-
instruction rate: the
darker the colour, the
higher the rate.

Y-Branch

Basic blocks in Y-
Branch node are green
or red, representing
Y-branch and non-Y-
Branch.

Conclusion

In this poster, we present Visilience, a visual resilience analysis frame-
work to show the resilience analysis results to programmers in an intuitive
way. Visilience takes the Control Flow Graph as a layout and maps the
resilience analysis data on it. Visilience conducts three resilience analy-
sis models and encodes these data into a unified data format, and visualizes
the data into an interactive interface. The Visualization Engine provides sev-
eral human-computer interactions, which help the users understand the data
better. Multiple case studies have been conducted to demonstrate the effec-
tiveness of Visilience.
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