
A common compiler ecosystem for domain specific languages
 Nick Brown (EPCC, n.brown@epcc.ed.ac.uk), Tobias Grosser, Mathieu Fehr, Michel Steuwer (University of Edinburgh), Paul Kelly (Imperial College London)

Case study: Integrating xDSL with a Fortran DSL

What is our xDSL ecosystem?

What are Domain Specific Languages (DSLs)? 30 second summary
• Domain Specific Languages (DSLs) have great potential.

• Underlying toolchains are often siloed and share very little or no infrastructure.

• We are developing a Python ecosystem so DSL developers can write a thin-layer

on-top of existing, well supported, MLIR/LLVM compiler infrastructure.

Get Involved
xDSL is open source

and we welcome

contributions
www.xdsl.dev

github.com/xdslproject

Building on LLVM and MLIR

PSyclone is Fortran-based DSL developed by STFC & the Met Office

and used for weather and climate codes including LFric & NEMO

Why are DSLs not ubiquitous in HPC?

A major disadvantage is in the siloing of compiler

infrastructure, where DSLs tend to share very little or no

infrastructure between them at the toolchain level.

Funded by ExCALIBUR

The UK ExCALIBUR program address the challenges and

opportunities offered by computing at the exascale and

aims to deliver the next generation of HPC simulation

software and tooling https://excalibur.ac.uk/

MLIR enables representing and mixing

dialects of intermediate representations

and abstractions, thus providing easier

integration, reuse, and optimisation.

However, currently written in C++ there is

a fairly steep learning curve that our

Python toolbox looks to address.

DSLs provide a separation of concerns, where domain

specific abstractions enable programmers to concentrate

on their application logic whilst providing a rich amount of

information upon which the toolchain can determine

tricky low-level decisions around parallelism.

The term language is a misnomer, tools and frameworks

that provide domain specific abstractions would be better

Reinventing the wheel

Limited opportunities

for DSLs to target

multiple domains

Considerable effort

for new architectures

Uncertainty around long

term maintenance

Considerable effort

needed to develop a DSL

Limited third-party tools

We must solve the challenges around siloing in order for

DSLs to become more widespread

Hence our vision: A DSL being a thin layer atop an existing,

mature ecosystem with a wealth of third party tools

Many application

domains can

benefit from using

Variety of

existing or

new DSLs can

build upon our

technology

Our Python

toolbox

exposes MLIR

dialects and

utilities in a

high

productivity

manner

Many dialects, both

existing and those

developed in this

project are provided.

These can be mixed

and manipulated

and such sharing

results in flexible

composability &

reuse

• Composability, where DSL owners choose

what parts of our ecosystem to leverage

• Interoperability between DSLs

• Code reuse of toolchain infrastructure

• Longevity of DSL compiler technology as

we build upon LLVM and MLIR

• Performance because dialects and

backends are developed by experts

• Productivity for both the application and

DSL developers due to code reuse

• Portability for application codes and DSLs

across architectures.

Our ecosystem provides:

MLIR dialects are translated

into LLVM-IR which provides

backends for many

hardware architectures, or

alternatively C or Fortran

There are numerous third party tools for

LLVM-IR, such as profilers and debuggers

There is an explosion of hardware architectures for HPC,

and as we move into the exascale era a key challenge is

how to fully exploit such complex, highly parallel

supercomputers.

This siloing of toolchains results in:

User code is transformed into

the Fortran MLIR dialect,

combining other dialects as

appropriate and then generating

code to target distributed memory,

GPUs, and/or FPGAs.

Using PW advection scheme with 137 billion global grid points on ARCHER2 with 128-core AMD Rome CPU nodes. Running on Cirrus V100s for GPUs.

Arguably, DSLs are the only way in which we can effectively

program and exploit exascale supercomputers

LLVM is a collection of common

compilation tools and infrastructure.

There are numerous LLVM backends

available for different hardware,

targeted via LLVM-IR.

This distributed memory or GPU

parallelism can be automatically

extracted from the scientific

codes in using existing, sharable

transformations. Once a DSL is

integrated with xDSL, aspects

such as this come largely out of

the box.

The use of Fortran here is an

example, xDSL can be used

with many different languages,

for instance the Devito DSL

which is also integrated with

xDSL and Python-based.

Python toolbox based upon MLIR, integration with MLIR & series of HPC dialects

