

Automated Monitoring of Large-scale Computing Systems

A Light-weight and Unsupervised Method for Near Real-time Behavioral Analysis Using Operational Data Measurement

[Scan to reproduce]

Tom Richard Vargis, Siavash Ghiasvand

Motivation

Operational data of computing systems are correlated. Changes in the value of this data and the balance between them is a reflection of the system's behavior. Detection of deviation of system behavior in early stages would prevent major failures which otherwise could cause additional damages. This work proposes a light-weight and fully unsupervised method for near real-time behavioral analysis using energy consumption and temperature measurements of large computing systems.

Timestamp	Avg. power	CPU0 power	CPU1 power	CPU0 temp.	CPU1 temp.
2022-07-13 00:00:07	131.5206	33.27999	26.91096	59.0	57.0
2022-07-13 00:00:17	114.7102	24.99287	20.10629	60.0	57.0
2022-07-13 00:00:27	136.3787	36.36461	27.79525	60.0	57.0
2022-07-13 00:00:37	129.5102	31.33605	25.26149	59.0	57.0
2022-07-13 00:00:47	118.3239	26.30085	21.37567	60.0	57.0

MetricQ²

Data Preparation

Proposed method

- Collection and streaming of temperature and energy consumption data using MetricQ²
- Preprocessing, normalization and down sampling of collected operational data
- Progressive training of a purposely designed light-weight LSTM Autoencoder
- Continues update of the trained model to reflect current systems behavioral pattern
- Automatic adjustment of threshold value based on most current normal behavior
- Identifying divergence from normal behavior

Main characteristics

- Minimal training data and iterations (4 hours and 50 epochs)
- Accurate prediction of systems behavior (approx. 96%)
- Near real-time behavioral analysis (< 2 min)
- System users behavioral pattern awareness
- Rapid automatic adaptation to system changes

Future work

- Adaptive threshold calculation
- Identification of failures type/category
- Further optimization of hyper parameters
- Definitive decision based on the identified anomalies

Predictions & Unexpected behaviours

AUTHORS

TU DRESDEN Tom Richard Vargis

tom_Richard.Vargis@tu-dresden.de

TU DRESDEN

Siavash Ghiasvand

siavash.ghiasvand@tu-dresden.de

Sponsored by

PARTNER

