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Introduction
● In order to fully utilize shared-memory

architectures, developers needed to
introduce OpenMP to their code.

● Introducing OpenMP schemes is a hard and
tedious task, especially in legacy codes. Thus,
many automatic source-to-source compilers
(S2S) have been created to cope with this task.

● Nevertheless, S2S compilers have many pitfalls due to the 
complexity in parsing the source code; limited robustness to the 
input; and time consuming data-dependence algorithms.

● Due to recent innovations in natural language processing (NLP), 
such as Transformers, the possibility of tackling the task of 
introducing OpenMP directives with NLP models, rises.
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Research Objective
● We propose an NLP model – based on a novel parallel code 

database – that will suggest locations in need for an OpenMP 
directive and even specific clauses such as private and reduction.

● Due to negligible inference time, the model can suggest immediate 
on-the-fly advice for the developer:

Corpus
● We created a database named Open-OMP with 17,000 unique 

code snippets containing the for-loop, OpenMP directive (if exists), 
and an AST representation of the two. 

● Half of the code snippets are labeled with an OpenMP directive, 
while the other half with a high probability, not.

● The code snippets were extracted from C files exclusively that 
were gathered with Github by searching the phrase “OpenMP”.

● The data-validation-test were split in an 80%-10%-10% ratio.
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● We propose a novel model named PragFormer for identifying the 
need for an OpenMP directive and specific clauses based on the 
transformer architecture. 
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Model
● The self-attention mechanism

in the transformer architecture 
calculates a score for each
element with respect to any
other element. The score
determines the amount of
consideration between
elements in each consecutive layer.

● Identifying OpenMP directives is mostly hinted from the 
dependencies between variables and statements. Therefore, the 
self-attention mechanism is crucial for the task at hand.

● PragFormer is based on the pre-trained model DeepSCC, a 
fine-tuned RoBERTa model for source code.

● To perform the classification, the transformer architecture feeds its 
output to an FC layer that predicts a binary label through a softmax 
layer.
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Code Representation
● The source code is represented as a sequence of tokens (from a 

predefined vocabulary), each token is associated with a numerical 
vector – the vector in turn is fed to PragFormer.

● We test two source code representations: natural text and AST.

Text representation AST representation

Results

● PragFormer achieves the best results on all four metrics on all 
three test cases.

● The text representation achieves the best performance, likely due to 
DeepSCC and RoBERTa familiarity with this representation. 

● We present the validation loss and accuracy of the textual and AST 
representation over the validation set:
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● The following figure presents the result of the explainability tool 
LIME on two representative examples from the benchmarks:

Future Work

● The prediction error rate as a 
function of the code length is
presented.

● Relatively, examples with
length >10 and length <10 
produced the same error rate
of ~18%.

● It might indicate that length doesn’t effect the decision of the 
model.

● Attention to array variables and indices.

● fprintf is the main reason for predicting without OpenMP.

● Providing the full context of the source 
code rather the for-loop segment.

● Exploring new source code 
representations such as IR2vec.

● Enhancing the model to generate the 
OpenMP directive.

● Exploring other parallelization 
paradigms such as MPI and 
heterogeneous systems.

PolyBench SPEC-OMP

● To further test the generality of PragFormer, two benchmarks are 
tested: SPEC-OMP and PolyBench:

● PragFormer produces excellent results on OpenMP benchmarks.
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● We compare PragFormer with the text representation to the S2S 
compiler ComPar which incorporates three S2S compilers - 
AutoPar, Par4All and Cetus and produces their combined best 
results; and a simple classification model Bag-of-Words (BoW).

● For the two research questions presented, the precision, recall, f1 
and accuracy scores are calculated over the test for PragFormer, 
BoW and ComPar.
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