
Learning to Parallelize Source Code via OpenMP with Transformers

Acknowledgments: This work was supported by the Israeli Council for Higher Education (CHE) via the Data Science Research Center, the Lynn and William Frankel Center for Computer Science, and Intel Corporation (oneAPI Center of Excellence program). Computational support was provided by the NegevHPC project.

Re’em Harel[1,2,3], Yuval Pinter[1], Gal Oren[3,4]*

Scan me!

[3] Scientific Computing Center, Nuclear Research Center – Negev, Israel
[4] Faculty of Computer Science, Technion, Israel

[3] Scientific Computing Center, Nuclear Research Center – Negev, Israel
[4] Faculty of Computer Science, Technion, Israel

Introduction
● In order to fully utilize shared-memory

architectures, developers needed to
introduce OpenMP to their code.

● Introducing OpenMP schemes is a hard and
tedious task, especially in legacy codes. Thus,
many automatic source-to-source compilers
(S2S) have been created to cope with this task.

● Nevertheless, S2S compilers have many pitfalls due to the
complexity in parsing the source code; limited robustness to the
input; and time consuming data-dependence algorithms.

● Due to recent innovations in natural language processing (NLP),
such as Transformers, the possibility of tackling the task of
introducing OpenMP directives with NLP models, rises.

* galoren@cs.technion.ac.il

Research Objective
● We propose an NLP model – based on a novel parallel code

database – that will suggest locations in need for an OpenMP
directive and even specific clauses such as private and reduction.

● Due to negligible inference time, the model can suggest immediate
on-the-fly advice for the developer:

Corpus
● We created a database named Open-OMP with 17,000 unique

code snippets containing the for-loop, OpenMP directive (if exists),
and an AST representation of the two.

● Half of the code snippets are labeled with an OpenMP directive,
while the other half with a high probability, not.

● The code snippets were extracted from C files exclusively that
were gathered with Github by searching the phrase “OpenMP”.

● The data-validation-test were split in an 80%-10%-10% ratio.

[1] Department of Computer Science, Ben-Gurion University of the Negev, Israel
[2] Department of Physics, Nuclear Research Center – Negev, Israel

Unknown
33.5%

Generic
Application

43%

Benchmarks
16.5%

Test
7%

7,613

- 3,403 private
clause

- 1,455 reduction
clause

- 374 schedule
dynamic

OpenMP
directives- Query GitHub.com

searching
“OpenMP”

- Contains snippets
with and without
OpenMP directives

- Unique

- Extracted from C
files exclusively

Code
Snippets17,013

● We propose a novel model named PragFormer for identifying the
need for an OpenMP directive and specific clauses based on the
transformer architecture.

The distribution of OpenMP
snippets sources.

The line length distribution.

PragFormer

Overview of the workflow for classifying OpenMP
directives and clauses.

Model
● The self-attention mechanism

in the transformer architecture
calculates a score for each
element with respect to any
other element. The score
determines the amount of
consideration between
elements in each consecutive layer.

● Identifying OpenMP directives is mostly hinted from the
dependencies between variables and statements. Therefore, the
self-attention mechanism is crucial for the task at hand.

● PragFormer is based on the pre-trained model DeepSCC, a
fine-tuned RoBERTa model for source code.

● To perform the classification, the transformer architecture feeds its
output to an FC layer that predicts a binary label through a softmax
layer.

transform
ers

Identifying
programming

language
DeepSCC

Predicting
words

RoBERTa

Identifying
OpenMP directives

 and clauses.

Prag-
Former

Overview of the creation
of the database.

Code Representation
● The source code is represented as a sequence of tokens (from a

predefined vocabulary), each token is associated with a numerical
vector – the vector in turn is fed to PragFormer.

● We test two source code representations: natural text and AST.

Text representation AST representation

Results

● PragFormer achieves the best results on all four metrics on all
three test cases.

● The text representation achieves the best performance, likely due to
DeepSCC and RoBERTa familiarity with this representation.

● We present the validation loss and accuracy of the textual and AST
representation over the validation set:

OpenMP Directive and Clause Classification

Explainability & Benchmarks

The model understands
that these I/O functions

mean there shouldn’t be
an OpenMP directive.

Model pays attention
to the correct variables.

● The following figure presents the result of the explainability tool
LIME on two representative examples from the benchmarks:

Future Work

● The prediction error rate as a
function of the code length is
presented.

● Relatively, examples with
length >10 and length <10
produced the same error rate
of ~18%.

● It might indicate that length doesn’t effect the decision of the
model.

● Attention to array variables and indices.

● fprintf is the main reason for predicting without OpenMP.

● Providing the full context of the source
code rather the for-loop segment.

● Exploring new source code
representations such as IR2vec.

● Enhancing the model to generate the
OpenMP directive.

● Exploring other parallelization
paradigms such as MPI and
heterogeneous systems.

PolyBench SPEC-OMP

● To further test the generality of PragFormer, two benchmarks are
tested: SPEC-OMP and PolyBench:

● PragFormer produces excellent results on OpenMP benchmarks.

<10
58%

11-50
35%

>50
7%

#pragma omp parallel for

Illustration of said
model incorporated
with an IDE,
suggesting OpenMP
directive

S2S
compilers

● We compare PragFormer with the text representation to the S2S
compiler ComPar which incorporates three S2S compilers -
AutoPar, Par4All and Cetus and produces their combined best
results; and a simple classification model Bag-of-Words (BoW).

● For the two research questions presented, the precision, recall, f1
and accuracy scores are calculated over the test for PragFormer,
BoW and ComPar.

private clause
identification

OpenMP directive
identification

reduction clause
identification

#pragma omp parallel
for private(j)

