
https://kokkos.org

https://www.openacc.org

0.10

1.00

10.00

100.00

1

10

100

1000

REF2 REF4 REF8

Sp
ee

du
p

-l
og

 sc
al

e

Ti
m

e
-l

og
 sc

la
e

(s
ec

)

OpenACC CUDA
OpenMP Target CUDA/OpenACC
OpenMP Target/OpenACC

Performance Analysis

DESCRIPTIVE (OPENACC) VS PRESCRIPTIVE (CUDA)
OpenACC faster than CUDA?

REPOSITORY & CONTACTS

CONCLUSIONS & FUTURE EFFORTS

ATOMIC OPERATIONS & MEMORY

PLATFORM MINI-BENCHMARKS

Multi-DimensionalSingle Range

D
O

T
A

X
PY

Hierarchial Parallelism

MOTIVATION
Single Range Multi-Dimensional Hierarchical Parallelism

Improve programming productivity:
•	 OpenACC codes are simpler to implement and maintain

than other codes, such as CUDA, HIP, OpenCL, etc.

•	 Both (Kokkos and OpenACC) aim to be architecture
agnostic, which make both models very similar and
facilitate the implementation of the Kokkos features using
OpenACC.

•	 Portable back-end. OpenACC model can target different
architectures.

•	 Use OpenACC features to complement Kokkos features to
improve performance on existing applications.

•	 Simplify the porting of OpenACC applications to Kokkos.

Kokkos atomic operations
can be implemented
by using OpenACC
annotations.

m
in

iF
E

SN
A

P-
LA

M
M

PS
Lu

le
sh

ECP MINI-APPS

Next, we highlight why it is possible to provide competitive or even better performance using a high-level and high
programming productivity descriptive (pragma-based) model (OpenACC) than using a low-level prescriptive (device-specific)
model (CUDA) for C++ Metaprogramming solutions (Kokkos).

•	 C++ Metaprogramming solutions, like Kokkos, rely on C++ lambdas. C++ lambdas are defined by application programmers
and can express any operation.

•	 Device-specific solutions like CUDA weren’t designed to work at lambda level originally. CUDA Kokkos back-end relies on
CUDA developers, who don’t know which operations will be computed by GPU kernels, but they must take decisions about
size of CUDA blocks, memory usage, synchronization, etc. This makes the optimization of these solutions extremely difficult or
even impossible.

•	 OpenACC backend relies on compiler, which can take better decisions depending on the operations defined by C++ lambdas
and application developers.

•	 Kokkos::malloc (acc_malloc),

•	 Kokkos::free (acc_free) and

•	 Kokkos::view are used to represent user data.

•	 Kokkos::deep_copy (acc_memcpy_[to/from]_device)
is used for memory transfers.

ORNL SUMMIT
•	 1x NVIDIA Volta V100 GPU (16 GB)

•	 CUDA back-end (CUDA 11.0.3)

•	 OpenMP Target back-end (LLVM 15.0.0 git)

•	 OpenACC back-end (NVHPC 21.3)

https://github.com/ORNL/kokkos-ornl/tree/openacc

•	 Pedro Valero-Lara, valerolarap@ornl.gov

•	 Seyong Lee, lees2@ornl.gov

•	 Marc Gonzalez-Tallada, gonzaleztalm@ornl.gov

•	 Joel Denny, dennyje@ornl.gov

•	 Jeffrey S. Vetter, vetter@ornl.gov

OpenACC vs CUDA:
•	 Competitive performance for Single Range.
•	 Better performance for Multi-Dimensional.
•	 Competitive performance for Hierarchical Parallelism

parallel_for and worse performance for parallel_reduce.
•	 Competitive (lulesh) and better performance (miniFE) on

mini-apps.

OpenACC vs OpenMP Target:
•	 Better performance in most of the cases tested.

KOKKACC is aligned with other important efforts:
•	 Analysis, codesign and development of the OpenACC capacity

for C++.
•	 Enhancing C++ [for HPC] using the capacity of OpenACC.
•	 Design of new OpenACC capabilities.

Future Efforts:
•	 Implement future/current Kokkos features in OpenACC

back end parallel_scan, tasking, etc.
•	 Explore novel optimizations

KokkACC: Enhancing Kokkos with OpenACC

Kokkos Programing Model & KokkACC Implementation

Pedro Valero-Lara, Seyong Lee, Marc Gonzalez-Tallada, Joel Denny, and Jeffrey S. Vetter
Advanced Computing Systems Research Section, Programming System Group

2022 International Conference for High Performance Computing, Networking, Storage, and Analysis (SC’22)

