SC22 Proceedings

The International Conference for High Performance Computing, Networking, Storage, and Analysis

Technical Papers Archive

Scaling Correlated Fragment Molecular Orbital Calculations on Summit

Authors: Giuseppe Barca and Calum Snowdon (Australian National University); Jorge Galvez-Vallejo (Iowa State University); Fazeleh Kazemian (Australian National University); Alistair Rendell (Flinders University, Australia); and Mark S. Gordon (Iowa State University)

Abstract: Correlated electronic structure calculations enable an accurate prediction of the physicochemical properties of complex molecular systems; however, the scale of these calculations is limited by their extremely high computational cost. The Fragment Molecular Orbital (FMO) method is arguably one of the most effective ways to lower this computational cost while retaining predictive accuracy. In this paper, a novel distributed many-GPU algorithm and implementation of the FMO method are presented. When applied in tandem with the Hartree-Fock and RI-MP2 methods, the new implementation enables correlated calculations on 623,016 electrons and 146,592 atoms in less than 45 minutes using 99.8% of the Summit supercomputer (27,600 GPUs). The implementation demonstrates remarkable speedups with respect to other current GPU and CPU codes, and excellent strong scalability on Summit achieving 94.6% parallel efficiency on 4600 nodes. This work makes feasible correlated quantum chemistry calculations on significantly larger molecular systems than before and with higher accuracy.

Back to Technical Papers Archive Listing