SC22 Proceedings

The International Conference for High Performance Computing, Networking, Storage, and Analysis

ACM Student Research Competition Poster Archive

Multi-Objective Evolutionary Clustering of Single-Cell RNA Sequencing Data

Student: Konghao Zhao (Wake Forest University)
Supervisor: Natalia Khuri (Wake Forest University)

Abstract: Cells are the basic building blocks of human organisms. Single-cell RNA sequencing is a technology for studying the heterogeneity of cells of different organs, tissues, subjects, conditions, and treatments. Identification of cell types and states in sequenced data is an important and challenging task, requiring computational approaches that are accurate, robust, and scalable. Existing approaches use cluster analysis as the first step of cell-types prediction. Their performance remains limited because they optimize only one objective function. In this study, two evolutionary clustering approaches were designed, implemented, and systematically validated, namely a single-objective evolutionary algorithm and a multi-objective evolutionary algorithm. The algorithms were evaluated on synthetic and real datasets. The results demonstrated that the performance and the accuracy of both evolutionary algorithms were consistent, stable, and on par with or better than baseline algorithms. Running time analysis of multi-processing on an HPC showed that evolutionary algorithms can efficiently handle large datasets.

ACM-SRC Semi-Finalist: no

Poster: PDF
Poster Summary: PDF

Back to Poster Archive Listing