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O When performing object detection, image data is I QO Revised implementation runs partly on a low-power device with a different architecture (ARM vs. x86) | QO Cloud-edge architectures allow for
often transmitted to a more powerful cloud system ) Q Consequentially, client-server communication can no longer be handled internally using MPI. | cost-effective allocation of HPC
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ar_chi_tgc_ture for_ad_aptive_ lossy compressiqn, | Q Additionally, we compare the performance of a single lossless pass to that of SZ's internal per-array stage. | device demonstrates how our model
prioritizing quality in regions where detection | I performs in the field.
occurs. Q By identifying bottlenecks and

QO To validate and refine this model for practical use, : RES |_| I_TS : limitations imposed by real
we propose a revised implementation split communication arfd hard‘."are‘ we

1 - - - - 1 learn what limitations exist and how
between real edge and cloud hardware. I Edge Compression Bandwidth Entire Frame Compression Ratio | they may be overcome
| | Q The task of pedestrian detection
s provides a practical scenario
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1 The Pi only has 4 cores, so increasing the number of By applying the lossless step to the entire frame, rather 1
| splits has a much greater performance penalty than on than individual splits, we achieve improved ratios and 1
Iﬁ RGB 1 Palmetto (splits become serialized). performance than with a default SZ configuration. 1 Splits and bounding boxes for adaptive
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< D | 1 | compressed data, the largest limiting
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BOXES | axmun Bondwiath (KB/s) | Q  For split SZ compression, applying the
CLOUD I Adaptive compression primarily performs worse than To demonstrate that our implementation represents the | lossless pass after joining offers a
) ; : : notable improvement in compression
I fixed PSNR compression on the Pi. At 256 KB/s, however, source model, the detection performance must compare | e d h b p
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