
*oneAPI
supported
hardware

DIM_X DIM_
Y

DIM_M DIM_N DIM_K DIM_XA DIM_YA DIM_XB DIM_YB

cuda 16 16 96 96 16 32 8 8 32

ker2 16 16 64 64 8 32 8 8 32

ker11 12 4 48 48 2 24 2 24 2

Figure 2: Extended Structure of MAGMA

CONCLUSION AND FUTURE
DIRECTIONS
● oneAPI is a promising approach for portable,

parallel programming on heterogeneous
systems and various architectures

● DPCT useful for initial port of CUDA to DPC++
● Large numerical libraries written in CUDA can

be easily translated to DPC++ to provide
functional portability to different vendor
GPUs, as well as multicore CPUs

● Initial migrated code tuned for NVIDIA GPUs
performs well on multicore CPUs and retains
performance on NVIDIA GPUs

● Further sets of constants must be tested
using autotuning techniques to discover the
best performing versions for taking full
advantage of the computational capabilities of
the Intel GPU for GEMM algorithms

COMPUTATIONAL
ENVIRONMENT
AMD EPYC 7742 INTEL® XEON®
PROCESSOR PROCESSOR E5-2698
V4
Cores: 64 Cores: 20
Base Clock: 2.25 Ghz Base Clock: 2.20 Ghz
Threads: 128 Threads: 40
Cache: 256 MB Cache: 50 MB
NVIDIA GEFORCE INTEL UHD GRAPHICS
RTX 3060 P630 [0x3e96]
GPU Cores: 3584 Cores: 192
Base Clock: 1320 MHz Base Clock: 350 MHz
Memory: 12 GB Memory: Shared System
Discrete GPU Integrated GPU

● Intel’s GPU is a mobile device and thus has
significantly less computational power than
the Nvidia GPU

● DPC++ can be compiled directly to multicore
CPUs and Intel GPUs upon installation
whereas Nvidia GPU requires installation of
the DPC++-LLVM (Clang-LLVM) compiler [3]

● MAGMA’s GEMM algorithm translated and
tested in this research is shown in Figure 3
○ Used for GEMM of any type

● 9 important constants for tuning algorithm to
a given hardware
○ DIM_X and DIM_Y determine dimensions of

thread block executed in parallel
○ DIM_M and DIM_N determine dimensions of

sub-matrix product which thread block
computes

○ Remaining constants affect how matrices A
and B are loaded into shared memory

● Product C_IJ is stored in registers of
multiprocessor/core that computes C_IJ,
which vary in number across hardware

● Size of C_IJ is critical to high performance
● Algorithm was developed and auto-tuned for

optimal performance on NVIDIA GPUs [5]
● Parameters that optimize the GEMM algorithm

on current high-end NVIDIA devices are
labeled as cuda in Table 1

GEMM PARAMETERS
● cuda set performed well on multicore CPUs
● DPC++ code migrated by the DPCT retained

performance of CUDA
● cuda performed poorly on Intel GPU (Fig. 7)
○ New sets were tested - ker2 and ker11 were

the best performing (Fig. 8)

Table 1: GEMM Algorithm Constants

MAGMA TO DPC++
PORTABILITY ON MULTICORE
CPUS
● Migrated DPC++ code ran successfully on

multicore CPUs
○ Achieved 100% usage, confirmed with htop

● Migrated code demonstrated impressive
performance
○ Able to outperform higher-bound MKL on

the AMD CPU (MKL is tuned for Intel CPU)
○ Outperformed lower-bounds on Intel CPU

● DPC++(MAGMA) is the migrated MAGMA
SGEMM code, DPC++(CUDA) is a migrated
generic CUDA SGEMM code [4]

Figure 4: SGEMM Performance on AMD EPYC 7742 64-Core Processor @ 2.25GHZ

Figure 5: SGEMM Performance on INTEL® XEON® CPU E5-2698 V4 20-Core
Processor @ 2.20GHZ

MAGMA TO DPC++
PORTABILITY ON NVIDIA
GPUs
● Initial migrated code ran successfully on the

Nvidia GPU with the DPC++-LLVM compiler
○ Achieved 100% usage, confirmed with watch

-n0.5 nvidia-smi
● cuda constants remained optimal
● Achieved performance similar to that of

MAGMA, which is optimized for Nvidia GPUs
● CUDA denotes the generic SGEMM algorithm

Figure 6: SGEMM Performance on NVIDIA GeForce RTX 3060

MAGMA TO DPC++
PORTABILITY ON INTEL GPUS
● Initial migration performance results were

very poor (Fig. 6) - migrated MAGMA SGEMM
code never exceeded two G/Flops

● cuda constants no longer optimal for the
hardware

● Sets ker2 and ker11 increased the
performance more than ten times (Fig. 7)

● Optimal algorithm parameters are yet to be
determined
○ Without specific details about the

architecture, parameters combinations are
tested via trial and error

Figure 6: Initial SGEMM Performance on Intel UHD Graphics P630 [0x3e96]

Figure 7: Tuned SGEMM Performance on Intel UHD Graphics P630 [0x3e96]

GENERAL MATRIX-MATRIX
MULTIPLICATION (GEMM)
DESIGN AND
IMPLEMENTATION IN DPC++
● GEMM design and implementation is

fundamental in HPC
● Performance-portable GEMM

implementations are challenging to develop
● Goal is to evaluate to what extent can a single

DPC++ code be performance-portable
● References for comparison aid with evaluation
○ Lower-bound implementations, as given in

Listings 1 and 2
○ Higher-bound, state-of-the-art implemen-

tations that are architecture-specific, e.g.
MKL and MAGMA

Listing 1: ijk loop implementation of the SGEMM routine.

Figure 3: The GEMM algorithm in MAGMA [6].

Listing 2: Blocked OpenMP implementation of the SGEMM routine.

ONEAPI PROGRAMMING
MODEL

● oneAPI consists of three main components:
Data Parallel C++ (DPC++), oneAPI libraries,
and analysis & debugging tools [2]
○ DPC++ is an implementation of the Khronos

standard SYCL
● SYCL is an accelerator language that allows

code reuse across hardware targets
○ Data parallelism and heterogeneous

programming added to standard ISO C++

● Listing 1 is a reference GEMM implementation
of low performance - a low bar to outperform

● Listing 2 shows a higher performance
implementation of Listing 1, which blocks for
computation for higher memory reuse

● Parallel implementation rendered using
OpenMP - I and J loops are collapsed to be
performed in data-parallel fashion on
different CPU cores/threads

● Implementation is parametrized, allowing for
tuning

● Target goal to outperform using DPC++ code.
● Denoted by C++(OpenMP)

INTRODUCTION
● Supercomputers (SC) provide computational

power necessary to resolve problems in a vast
number of important domains, such as High
Performance Computing (HPC)

● SC architectures are becoming increasingly
diverse in architecture types and designs
○ Eight of the top ten SCs ranked in the

Top500 list use accelerators, coming from
three different vendors [1]

○ Intel plans to join as a SC GPU vendor with
their announcement of Aurora

● Interoperability decreases between code and
hardware with this trend

● Intel presents an architecture-independent
programming model interface called oneAPI as
a solution
○ Scalar, vector, spatial, and matrix

architectures are supported
● Matrix Algebra on GPU and Multicore

Architectures (MAGMA), a dense linear algebra
library, can be used to test the capability and
value of this programming model

Extending
MAGMA
Portability
with OneAPI

Anna Fortenberry
University of North Texas

Stanimire Tomov (advisor)
Kwai Wong (advisor)
University of Tennessee,
Knoxville

ACKNOWLEDGEMENTS
This project was sponsored by the
National Science Foundation
through the Research Experience
for Undergraduates (REU) award
no. 2020534 with additional
support from the National
Institute of Computational
Sciences and Innovative
Computing Laboratory at the
University of Tennessee, Knoxville.

OPTIMIZED APPLICATIONS

OPTIMIZED MIDDLEWARE & FRAMEWORKS

DIRECT
PROGRAMMING
Data Parallel
C++ (DPC++)

Analysis &
Debug Tools

API-BASED
PROGRAMMING

oneAPI Libraries

SCALAR VECTOR SPATIALMATRIX

Figure 1: oneAPI Programming Model

MAGMA

INCLUDE

MAGMABLAS

DPC++ COMPILER DIRECTIVES

CUDA

INTERFACE_CUDA

oneMKL

NVIDIA GPU

DPCT DPC++ *
* oneAPI

supported
hardware

CUBLAS CUDA NVIDIA GPU

DPC++ *
REFERENCES
[1] June 2022 | TOP500. Top500 The List. Retrieved August 5, 2022 from

https://www.top500.org/lists/top500/2022/06/
[2] Intel oneAPI Programming Overview. Intel.

https://www.intel.com/content/www/us/en/develop/documentation/oneapi-programming-g
uide/top/introduction-to-oneapi-programming/intel-oneapi-programming-overview.html

[3] 2022. Compiling SYCL* for Different GPUs. Intel. Retrieved August 5, 2022 from
https://www.intel.com/content/www/us/en/developer/articles/tool/opencl-drivers.html

[4] 2022. NVIDIA/cuda-samples: Samples for CUDA Developers . - GitHub. GitHub. Retrieved
August 5, 2022 from https://github.com/NVIDIA/cuda-samples

[5] Rajib Nath, Stanimire Tomov, and Jack Dongarra. 2010. An Improved Magma Gemm For Fermi
Graphics Processing Units. The International Journal of High Performance Computing
Applications 24, 4 (2010), 511-515. DOI:https://doi.org/10.1177/1094342010385729

STRUCTURE OF MAGMA

MAGMA will adopt the oneAPI model by using
the DPC++ Translation Tool (DPCT) and the
oneAPI Math Kernel Library (oneMKL).

