
IOPathTune: Adaptive Online Parameter Tuning for Parallel File System I/O Path
Md. Hasanur Rashid, Dong Dai (Advisor)

Department of Computer Science, University of North Carolina at Charlotte

1. MOTIVATIONS
• Parallel file systems like Lustre contain complicated I/O paths

from clients to storage servers. Its efficiency is critical for perfor-
mance.

• I/O path requires proper settings of multiple parameters. The de-
fault settings often fail to deliver optimal performance, especially
for diverse workloads in the HPC environment.

• Existing tuning strategies are limited in terms of being adaptive,
timely, and flexible.

• We propose IOPathTune, which adaptively tunes PFS I/O Path on-
line from the client side.

2. IOPATHTUNE GOALS
• Adaptive.

- Work adaptively when workloads change.
- Response to runtime such as I/O contentions.

• Online.
- Adapt quickly when system status changes.
- Change parameters without remounting.

• Flexible.
- Tune parameters for multiple clients separately based on their
own executions.
- Avoid relying on expensive probing, communication, or profiling.

3. IOPATHTUNE DESIGN AND IMPLEMENTATION

Figure 1: Lustre I/O Path

• What do we observe to tune?
- IOPathTune does not probe storage servers or other compute
nodes. It solely depends on statistics collected by the PFS client li-
brary.

• What do we tune for PFS I/O Path?
- IOPathTune tunes two client-side OSC-level parameters:
max_pages_per_rpc and max_rpcs_in_flight (see Figure 1).

• How often does IOPathTune work?
- Tune every ten seconds and collects stat information snapshot in
the middle (see Figure 2).

• How do we tune?
- Similar to TCP congestion control, the tuning action is either to
continue or reverse previous actions (see Figure 3).
- We multiply or to divide the parameter value by two each time.

Figure 2: Snapshot Collection Figure 3: Heuristic Algorithm Flowchart

4. EVALUATIONS

• Setup.
- [Experiment Platform] CloudLab [1] c220g5 machines: 1 MDS, 4
OSS, and five compute nodes.
- [Software] Lustre 2.12.5 file system.
- [Workloads] 20 different Filebench [2] workloads (see Table 1).
- [Execution Environment] Both single and multiple client(s).

• Brief Results.
- IOPathTune either improves or performs on par with slight degra-
dation over the default configurations in all standalone single-client
workload executions (see Table 1).
- IOPathTune gains improvements as high as 231%, 113%, 96%
for fivestreamwriternd, sequential, and whole-file read-write stan-
dalone workload executions (see Table 1).
- IOPathTune adapts to the near-optimal parameter configurations
quickly upon workload changes (see Figure 4).
- IOPathTune maintains appropriate parameter configurations for
multiple clients executing different workloads (see Table 2).
- IOPathTune, in comparison with default configuration achieves
129% improvement and in comparison with CAPES [3] execution
achieves 89% improvement on the overall bandwidth of the cluster
(see Table 2).

Figure 4: Dynamic Workload Change Execution

Table 1: Single Client Standalone Workload Executions
I/O Request = 8KB I/O Request = 1MB I/O Request = 16MB

Workload I/O Tuned I/O Tuned I/O Tuned
Name BW Change(%) Configurations BW Change(%) Configurations BW Change(%) Configurations

Random Write 7.82 (32, 32) 22.97 (256, 4) 10.93 (1024, 4)
Fivestream Random Write 64.46 (32, 16) 231.98 (8, 1) 43.44 (8, 16)

Random Read-Write -7.46 (8, 4) 5.57 (256, 1) -2.91 (128, 16)
Sequential Write -4.39 (256, 4) -0.73 (256, 1) 7.56 (1024, 16)

Fivestream Sequential Write -7.29 (256, 64) 3.75 (512, 128) -7.59 (1024, 64)
Sequential Read-Write 4.03 (1024, 64) 113.19 (1024, 16) 72.6 (1024, 16)

Whole File Write 86.45 (32, 8)
Whole File Read-Write 96.58 (8, 8)

Table 2: Multiple Client Different Workload Executions
Default Execution CAPES Execution IOPathTune Execution

Workload Client I/O Default I/O Tuned I/O Tuned
Name Name BW(MB/s) Configurations BW(MB/s) Configurations BW(MB/s) Configurations

Fivestream Random Write node1 385.4 (1024, 8) 237 (200, 108) 2627.9 (32, 32)
Random Write node2 95.2 (1024, 8) 101.4 (200, 108) 206.3 (128, 8)

Random Read-Write node3 2127.6 (1024, 8) 4209.3 (200, 108) 3199.8 (512, 16)
Sequential Read-Write node4 639.2 (1024, 8) 630.8 (200, 108) 1134.6 (512, 128)
Whole File Read-Write node5 1682.3 (1024, 8) 784.3 (200, 108) 4135 (8, 2)
Total Multi-client BW (MB/s) 4929.7 5962.8 11303.6

5. CONCLUSIONS
Our study has shown how the proposed algorithm can perform adap-
tive online parameter tuning without characterizing workloads, do-
ing expensive profiling, and performing expensive communications.
We hope this approach will welcome more attention towards re-
searching inexpensive yet effective solutions in system research.

6. FUTURE RESEARCH
We like to scale our algorithm to accommodate tuning more param-
eters following this heuristic approach. We would also like to test it
out in real-world HPC facilities to observe how much improvement
the solution brings regarding I/O performance.

7. REFERENCES
[1] Duplyakin, Dmitry, et al. "The Design and Operation of Cloud-

Lab." 2019 USENIX annual technical conference (USENIX ATC 19).
2019.

[2] Tarasov, Vasily, Erez Zadok, and Spencer Shepler. "Filebench: A
flexible framework for file system benchmarking." USENIX; login
41.1 (2016): 6-12.

[3] Li, Yan, et al. "CAPES: Unsupervised storage performance tuning
using neural network-based deep reinforcement learning." Pro-
ceedings of the international conference for high performance comput-
ing, networking, storage and analysis. 2017.


