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➢ Extend existing lossy compressor frameworks, specifically SZ [2] and SZx [3] to

compress/decompress quantum circuit simulation data

➢ Develop pre/postprocessing data transforms to boost compressibility and throughput

➢ Optimize underlying SZ and cuSZ (GPU implementation of SZ) [4] stages to

increase throughput, specifically the Huffman encoding stage which can present a

significant bottleneck when compressing metadata used in cuSZ

➢ Understand the effect of lossy compression/decompression on tensor contraction

Quantum circuit simulation can be carried out as a contraction over many quantum

tensors. QTensor [1], a library built for quantum circuit simulation using a bucket

elimination algorithm, contracts tensors to return a final energy value. Tensors

represent quantum circuit gates that operate on quantum states, thus they are

composed of floating-point complex numbers. A tensor with dimension 𝑑 has 2𝑑 data

points. As bucket elimination advances, tensors can grow large, and memory becomes

a bottleneck. To address memory limitations of circuit simulation while enabling more

complex circuits to be simulated, we focus on implementing a lossy compressor that

can compress the data stored in quantum circuit tensors while simultaneously

preserving a final energy value within an error bound after decompression.

We study the effects of various lossy compression/decompression strategies on

tensor data compressibility, throughput, and result error to ensure

compression/decompression can be effective, fast, and does not heavily distort data.

We target GPU as a compression platform due to its massively parallel architecture

and optimize for GPU efficiency using CUDA 11.
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Conclusions and Future Work

A relative-to-range (R2R) value is multiplied with the maximum of a dataset minus the

minimum of the dataset to yield either a threshold or absolute error bound. We apply

varying R2R thresholds and R2R absolute error bounds to QTensor data, compress then

decompress the data, then finish the bucket elimination contraction to obtain the final

energy value. We compare this value to the energy value of bucket elimination with no

lossy compression as a middle stage.
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Preliminary Huffman Results

QTensor Data
• Floating-point

• Periodic when laid out in 1-D

• Many values close to zero

• Complex numbers, thus split

into real and imaginary

components for storage

Challenges

• Need to bound final energy

value

• FP data -> less compressible

• Data not smooth
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• SZ/SZx accept an absolute error bound that guarantees decompressed points are 

within specified value

• For above table, contraction is stopped with 16 steps left

• We target the red box of values (~1%-3% or less error) and explore different absolute 

error and threshold combinations in this range

Huffman Optimization
Huffman encoding is used in SZ and presents a performance bottleneck due to the serial

nature of building a Huffman tree. In SZ (and cuSZ), data points are predicted based on

previous data points and the distance from the prediction to the true value is expressed

as a quantization of the error bound. These quantizations, expressed as integers, must

be compressed and can be fed as a distribution into Huffman coding. We explore using

prebuilt Huffman trees instead of custom building a Huffman tree for each dataset run

through SZ/cuSZ. A tree is selected for a dataset based on the entropy of the tree and

the dataset’s quantization distribution.

• Above plots show results for tensors varying in dimension from 𝑑 = 26,27,28

• LZ4 is a CUDA-based lossless compressor added to compress the bitmap

Preliminary Pre/Postprocessing Results
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1.00E-05 17.95 16.77

5.00E-06 13.61 11.63

1.00E-06 7.26 6.14

➢ Used normal distributions with varying

entropies

➢ X-axis indicates entropy of normal

distribution associated with a Huffman

tree, Y-axis is compression ratio

➢ Lowest entropy normal distributions

yielded Huffman trees that gave highest

compression ratios for QTensor datasets

with varying error bound

For thresholding and grouping, compression ratios are promising, and these methods

successfully boost compressibility while bounding energy result error to <3%.

However, grouping can present a significant performance overhead that must be

further minimized.

Pre-built Huffman trees can yield compression ratios that are close to optimal, but the

normal distribution may not be the best fit for SZ quantization distributions.

Additionally, only entropy has been studied as a selection criterion and other metrics

can be explored.

Pre/Postprocessing Steps
Thresholding: Since many tensor values are close to zero but not exactly zero when

represented in floating-point representation, a threshold can be applied such that all

values whose absolute value is less than the threshold are set to zero. Using this

approach, the similarity across data points increases since many values become zero.

Grouping: Once tensors have a threshold step applied, the grouping method can

rearrange data such that only nonzero values are compressed and zero values are

ignored. A bitmap is used to store whether a location in the tensor corresponds to a zero

or nonzero value. This can reduce the data size while simultaneously reducing the

amount of data that must be sent through SZ/SZx.

0.25 0.1 0.05 0.01 0.005 0.001 0.0005 0.0001

0.25 0.743 0.605 0.268 0.232 0.211 1.206 0.338 0.666

0.1 0.754 0.511 0.185 0.013 0.219 0.104 0.157 0.168

0.05 0.751 0.440 0.279 0.073 0.158 0.069 0.094 0.066

0.01 0.757 0.457 0.256 0.038 0.013 0.023 0.002 0.012

0.005 0.757 0.457 0.242 0.031 0.015 0.010 0.002 0.011

0.001 0.756 0.455 0.242 0.033 0.008 0.005 0.002 0.000

0.0005 0.756 0.455 0.243 0.035 0.009 0.002 0.001 0.001

0.0001 0.756 0.455 0.243 0.035 0.008 0.001 0.000 0.000
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Percent Error of True Energy Value and R2R Threshold/Absolute Error Applied Energy Value


