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Introduction

Quantum circuit simulation can be carried out as a contraction over many guantum
tensors. QTensor [1], a library built for quantum circuit simulation using a bucket
elimination algorithm, contracts tensors to return a final energy value. Tensors
represent quantum circuit gates that operate on quantum states, thus they are
composed of floating-point complex numbers. A tensor with dimension d has 2¢ data
points. As bucket elimination advances, tensors can grow large, and memory becomes
a bottleneck. To address memory limitations of circuit simulation while enabling more
complex circuits to be simulated, we focus on implementing a lossy compressor that
can compress the data stored in quantum circuit tensors while simultaneously
preserving a final energy value within an error bound after decompression.

We study the effects of various lossy compression/decompression strategies on
tensor data compressibility, throughput, and result error to ensure
compression/decompression can be effective, fast, and does not heavily distort data.
We target GPU as a compression platform due to its massively parallel architecture
and optimize for GPU efficiency using CUDA 11.
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Goals

» Extend existing lossy compressor frameworks, specifically SZ [2] and SZx [3] to
compress/decompress quantum circuit simulation data

» Develop pre/postprocessing data transforms to boost compressibility and throughput

» Optimize underlying SZ and cuSZ (GPU implementation of SZ) [4] stages to
Increase throughput, specifically the Huffman encoding stage which can present a
significant bottleneck when compressing metadata used in cuSZ

» Understand the effect of lossy compression/decompression on tensor contraction
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Pre/Postprocessing Steps

Thresholding: Since many tensor values are close to zero but not exactly zero when
represented Iin floating-point representation, a threshold can be applied such that all
values whose absolute value iIs less than the threshold are set to zero. Using this
approach, the similarity across data points increases since many values become zero.

Grouping: Once tensors have a threshold step applied, the grouping method can
rearrange data such that only nonzero values are compressed and zero values are
ignored. A bitmap is used to store whether a location in the tensor corresponds to a zero
or nonzero value. This can reduce the data size while simultaneously reducing the
amount of data that must be sent through SZ/SZx.
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Thresholding Effect on Energy Value

A relative-to-range (R2R) value is multiplied with the maximum of a dataset minus the
minimum of the dataset to yield either a threshold or absolute error bound. We apply

varying R2R t

nresholds and R2R absolute error bounds to QTensor data, compress then

decompress t
energy value.

ne data, then finish the bucket elimination contraction to obtain the final
We compare this value to the energy value of bucket elimination with no

lossy compression as a middle stage.

Percent Error of True Energy Value and R2R Threshold/Absolute Error Applied Energy Value

R2R Error
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Threshold (R2R)

0.25 0.1 0.05 001 0005 0001 00005  0.0001
025/ 0743 0605 0268 0232 0211 1206 0338  0.666
01/ 0754 0511 0185/ 0013 0219 0104 0157  0.168
005/ 0751 0440 0279 0073 0158  0.069 0094  0.066
001 0757 0457 0256  0.038 0.023
0.005| 0757 0457  0242|  0.031
0001 0756 0455  0.242|  0.033
0.0005| 0756 0455 0243  0.035
0.0001| 0756 0455 0243  0.035

pt an absolute error bound that guarantees decompressed points are

within specified value

* For above table, contraction is stopped with 16 steps left

* We target the red box of values (~1%-3% or less error) and explore different absolute
error and threshold combinations in this range

Huffman Optimization

Huffman encoding is used in SZ and presents a performance bottleneck due to the serial
nature of building a Huffman tree. In SZ (and cuSZ), data points are predicted based on
previous data points and the distance from the prediction to the true value Is expressed
as a guantization of the error bound. These quantizations, expressed as integers, must

be compress

ed and can be fed as a distribution into Huffman coding. We explore using

prebuilt Huffman trees instead of custom building a Huffman tree for each dataset run
through SZ/cuSZ. A tree is selected for a dataset based on the entropy of the tree and
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Preliminary Pre/Postprocessing Results
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* Above plots show results for tensors varying in dimension from d = 26,27,28
« LZ4 is a CUDA-based lossless compressor added to compress the bitmap

Preliminary Huffman Results
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Conclusions and Future Work

For thresholding and grouping, compression ratios are promising, and these methods
successfully boost compressibility while bounding energy result error to <3%.
However, grouping can present a significant performance overhead that must be
further minimized.

Pre-built Huffman trees can yield compression ratios that are close to optimal, but the
normal distribution may not be the best fit for SZ quantization distributions.
Additionally, only entropy has been studied as a selection criterion and other metrics
can be explored.
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