
Srinath Kailasa, Advisor: Timo Betcke

Mostly Painless Scientific Computing 
with Rust

GitHub Resume

The Ecosystem

Rusty Tree

Becoming a Rustacean Rusty Fast Solvers

We check    the libraries used by Rusty Tree

References
[1] Greengard, L., & Rokhlin, V. (1987). A fast algorithm for particle simulations. JCP, 73(2), 325-348
[2] Ying, L., Biros, G., & Zorin, D. (2004). A kernel-independent adaptive fast multipole algorithm in two and three dimensions. JCP, 196(2), 591-626
[3] Fong, W., & Darve, E. (2009). The black-box fast multipole method. JCP, 228(23), 8712-8725
[4] Minden, V., Ho, K. L., Damle, A., & Ying, L. (2017). A recursive skeletonization factorization based on strong admissibility. MMS, 15(2), 768-796.
[5] Ambikasaran, S., & Darve, E. (2014). The inverse fast multipole method. arXiv preprint arXiv:1407.1572.
[6] Greengard, L., Gueyffier, D., Martinsson, P. G., & Rokhlin, V. (2009). Fast direct solvers for integral equations in complex three-dimensional domains. Acta Numerica, 18, 243-275.
[7] Burstedde, C., Wilcox, L. C., & Ghattas, O. (2011). p4est: Scalable algorithms for parallel adaptive mesh refinement on forests of octrees. SIAM Journal on Scientific Computing, 33(3), 1103-1133.
[8] Malhotra, D., & Biros, G. (2015). PVFMM: A parallel kernel independent FMM for particle and volume potentials. Communications in Computational Physics, 18(3), 808-830.
[9] Sundar, H., Sampath, R. S., & Biros, G. (2008). Bottom-up construction and 2: 1 balance refinement of linear octrees in parallel. SIAM Journal on Scientific Computing, 30(5), 2675-2708.
[10] Sundar, H., Malhotra, D., & Biros, G. (2013). Hyksort: a new variant of hypercube quicksort on distributed memory architectures. In Proceedings of the 27th international ACM conference on international conference on supercomputing (pp. 293-302).

Acknowledgements
* Srinath Kailasa is supported by EPSRC studentship 2417009
and a G-Research PhD Grant.
* Timo Betcke is supported by EPSRC grants EP∕W007460∕1 & 
EP∕W026260∕1

Theoretical Background
* We convert PDEs to Integral Equations of a 
general form.

* This reduces the dimensionality of the
problem, converting a volume to a surface
integral. However, our discretised matrices
are dense. With O(N2) storage costs, and
naively O(N2) application and O(N3) inversion
cost 

* Fast algorithms have been developed for the 
forward [1,2,3] and inverse [4,5] application 
of the integral operator matrices that arise 
for certain PDEs in O(N) at best.

* There is a gap in research software for the
distributed application of operator inverses.
Once filled, simulating complex physical systems 
with multiple right hand sides, from biophysics 
to electromagnetics would be tractable [6].
 

Rust has a familiar syntax, inheriting concepts from both object oriented and
functional programming paradigms.

Cargo

Ownership
* Rust's unique memory system enforces
that each resource has only one owner at
compile time. When the owner goes out of
scope, the resource is freed.

* This works in tandem with the 'Borrow
Checker', which enforces that there is 
never more than a single mutable reference
to a given resource.

* Together, they allow for memory errors
to be caught at compile time.

* Cargo allows for the specification of
dependencies via TOML files. Cargo takes
responsibility for building and installing
all dependencies, except system level 
libraries. 

* Cargo can compile for a range of hardware
targets, from x86 to Arm, making deployment
often as simple as a single command.

Legend

Native Rust Library
Bindings to C++
Bindings to C
Bindings to Fortran
Project Maintainer

* The scientific Rust ecosystem is rapidly growing. Despite its
youth, Rust already supports most functionality needed for
high-performance computational science, either natively or via
bindings to other languages.

* At UCL we are currently developing a native Rust library to
replicate some of the functionality of Eigen. With fast linear
algebra routines, and expression templating, built on top of 
the popular ndarray container crate: 
github.com∕UCL-ARC∕householder

* The great challenge for 
the scientific Rust 
community is 
standardisation,this list 
illustrates a small, but 
popular, fraction of the 
ecosystem.

* Many libraries have 
overlapping concerns, and
many vital libraries are
simple bindings for 
implementations in more 
established languages, 
which cannot take 
advantage of Cargo.

Distributed Memory 
Parallelism
rsmpi rsmpi

Multithreading

rayon rayon-rs

rust-cuda
GPU Programming

rust-gpu
rust-gpu Embark Studios

Foreign Function
Interfacing

maturin PyO3

Numerical Data

ndarray rust-ndarray

Linear Algebra

rust-ndarray
Blas & Lapack
in Rust
rust-ml

ndarray-linalg

ndarray-linalg-rs

BLAS, LAPACK
CBLAS, LAPACKE

Data Visualisation

plotters 38

Data Persistance
hdf5-rust aldanor

Machine Learning &
Data Science
linfa
Tensorflow
ndarray-stats

rust-ml
Google
rust-ndarray

... and many more

SIMD

faster Adam Niederer

rusty-tree

rusty-green-kernel rusty-compression

rusty-translation

rusty-inverse

rusty-fmm

Figure 1 Illustration of progress on
the Rusty Fast Solers project. Blue
indicates usable libraries, yellow for
partially implemented libraries and
red for libraries in planning. 

* Octrees are the foundational data structure
for the Fast Multipole Method [1], used to acelerate
the application of dense matrices to O(N) in three
dimensional simulations.

* Octrees are a spatial decomposition of an three
dimensional cube in which the root node encloses the
area of interest containing all physical points being
meshed, and is recursively partitioned into eight
child nodes, until a user defined resolution is reached

* High-performance octree implementations that scale
in parallel computing environments are an active area
of research [7, 8, 9, 10], with the state of the art
implementations focusing on parallel algorithms that
apply a Morton encoding (which perserve spatial
locality) (fig 3c.) to a given point contained in an
octree node, and perform an efficient parallel sort
over encoded points. Querying encoded keys for the
points they contain is trivial.

* Rusty Tree is an MPI distributed implementation of
parallel octrees based on the algorithms first
presented in [9,10].

* We perform experiments onthe Rusty system at the
Flatiron Institute, with 40 core Skylake nodes.

Project goals and aims
* We are building a unified software for the
fast application of the forward and backward
discrete operators that arise from integral
equation formulations for elliptic PDEs.

* Our key target application is a fast solver
for electromagnetic scattering, specified by 
Maxwell's equations. E.G. from a perfect 
electric conductor:

* A fast solver for Maxwell's equations will 
allow for the rapid simulations in various
domains, from radar systems to material science
and medical imaging

* Our goal is for our software to deploy
anywhere, from a desktop workstation to a 
supercomputing cluster - to encourage maximum
adoption in the community.

+ Radiation Condition

The Alternatives
* Rust is not a competitor to interpreted
languages such as Matlab, Julia or Python,
and should not aim to be!

* Interpreted languages offer extensions
built in compiled languages or use just
in time (JIT) compilation to fast machine
code for performance sensitive
applications so that users familiar with
interpreted languages can continue to
benefit from the usability of interpreted
languages, and enjoy faster performance..

* Developing custom extensions requires
developers to maintain complex coupled
codebases.

*This tradeoff between language usability
and speed is referred to as the two 
language problem. Rust addresses this by
offering a fast ergonomic alternative to
existing compiled languages. 

!= | |

Figure 2 We demonstrate (a) weak scaling efficieny and (b) runtime, for 5e6 randomly dist.
points per processor, for a maximum of 640e6 points on 128 processors, used to construct a
balanced [9] distributed tree in approximately 55 seconds. 

Figure 3 (a) 'Wiggly torus' test geometry with five oscillations, and (b) an example 
octree for points in this geometry, (c) demonstrates Morton encoding for a node. 

z

x

y

(1, 2, 3) at level 3

(1, 2, 3) (001, 010, 011)

0000111010000111101|100492
interleave

append level

(a) (b) (c)


