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Predicts the positions of diffraction peaks.

APS-U
High-Energy X-Ray Beams Experiments

Surrogate Models

PtychoNN

BraggNN

AutoPhaseNN
Predicts the 2D amplitude and phase images.

Predicts the 3D amplitude and phase patterns.

Predicts the positions of diffraction peaks.

Hundreds of Peta Bytes
brain initiatives

Data Scale

• Ptychography imaging techniques aim to increase 
the resolution of images beyond x-ray optics. 

• Traditional iterative algorithms are computationally 
expensive. 

• Advanced Photon Source Upgrade (APS-U) will 
provide immense data.

• Surrogate models are designed to achieve the task 
more efficiently.

• To train surrogates on large datasets:
• Utilize supercomputers like ThetaGPU.
• Utilize data parallelism in distributed training. 

• Data loading takes >80% of training time!

Number of Data Loaded From PFS

Ptychography Imaging

From Single Device to Distributed Training 

Part II: Runtime Buffering

• (a & b) Epoch order optimization. 
• (c) Data locality optimization + Load balancing scheduling

• Determine buffered data eviction. 
• Perform balanced loading.
• Aggregated chunked loading

1. Idle time while waiting for data loading.
2. Load imbalance incurred.
3. Overall time reduced from balancing 
the load.

• Environment: ThetaGPU supercomputer
• Baseline: PtychoNN using Pytorch DataLoader.
• Dataset: In-house dataset from ANL APS. 262,896 images

Setup

V1
rank

avg. stddev median max
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

ite
ra

tio
n

1 67 107 69 54 57 58 41 69 75 48 68 74 54 79 58 55 64.6 15.4 62.5 107
2 56 75 82 69 96 63 75 62 69 88 74 57 60 87 59 81 72.1 12.3 71.5 96
3 67 56 71 71 85 105 65 72 79 71 60 81 84 53 80 87 74.2 13.1 71.5 105
4 110 70 91 92 68 77 61 59 64 79 79 62 79 85 89 68 77.1 13.9 78.0 110
5 84 89 94 80 73 83 75 70 86 100 110 81 74 73 79 77 83.0 10.8 80.5 110

total: 74.2 14.2 74.0 110

V2
rank

avg. stddev median max0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

ite
ra

tio
n

1 72 51 55 67 59 62 52 70 77 53 59 75 54 66 62 66 64.6 8.3 62.0 77
2 59 81 83 73 65 63 61 64 66 77 55 64 73 55 74 58 72.1 8.9 64.5 83
3 66 61 71 80 66 68 63 68 68 73 79 63 83 62 73 72 74.2 6.6 68.0 83
4 72 71 73 64 75 75 65 72 62 81 69 64 81 80 74 76 77.1 6.1 72.5 81
5 67 64 75 93 72 83 69 71 63 82 78 81 76 64 78 71 83.0 8.2 73.5 93

total: 69.1 8.6 69.0 93

• The baseline method loads 512 images on each rank in each step.
• Compared to Pytorch data loading, we reduced data loading by 6.7x.

Performance on Each Optimization Step
(V1) Data access order optimization,
(V2) V1 + load balancing optimization,
(V3) V2 + chunked loading optimization.

Optimization Speedup
V1 2.45x
V2 4.60x
V3 4.70x

Part I: Offline Scheduling

Background & Motivation Proposed Design Evaluation
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SurrogateTrain: Drastically Improving Performance of 
Data Loading for Training Scientific Surrogate Models

PtychoNN

The Architecture of DGX-A100 Nodes 

Data-Parallel
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PyTorch DataLoader [6]

Locality Aware [7]

DeepIO [8]

NoPFS [9]

SurrogateTrain (Ours)
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