
Efficiently Learning Locality Optimizations by
Decomposing Transformation Domains

Tharindu Patabandi and Mary Hall (advisor)
University of Utah

Optimizing compilers for efficient machine learning are more important
than ever due to the rising ubiquity of machine learning. Predictive
models to guide compiler optimization are sometimes used to derive a
sequence of loop transformations to optimize memory access
performance via deploying learned models. However, training models for
loop transformation often requires prohibitively expensive training data
generation when predicting the combined effects of a transformation
sequence. In this paper, we present a learning strategy called Composed
Singular Prediction that significantly reduces the training data generation
cost in the context of learned loop transformation models. The learned
models are then deployed to predict data locality optimization schedules
for Conv2d kernels to achieve performance improvements up to 4.0×
against Intel oneDNN while saving >100× in training data collection
time.

Classical search space, Multiplicative Domain Formulation (MDF)

❑ Learned models for compiler optimization are popular
❑ Datasets are not readily available
❑ Training data are generated on a case-by-case basis
❑ Requires some form of Design Space Exploration (DSE)
❑ Often requires sampling and/or pruning to handle the search

complexity

This work began in Summer 2020 at Intel Labs Machine Programming
Research (MPR) Group.
Anand Venkat, Justin Gottschlich (Intel Labs)
Abhishek Kulkarni, Pushkar Ratnalikar (Intel)
Vivek Srikumar (University of Utah)
Intel Academic Compute Environment (ACE)

Funding
DOE SciDAC, NSF

ACKNOWLEDGEMENTS

ABSTRACT METHODOLOGY

RESULTS

INTRODUCTION

Untiled oneDNN
AVG MAX AVG MAX

CSP-1 2.4x 5.5x 1.4x 3.7x
CSP-5x5 2.7x 6.6x 1.5x 4.0x

𝑠 = 𝑠1, 𝑠2, … , 𝑠𝑁 , 𝑠1 ∈ 𝑆1, … , 𝑠𝑁 ∈ 𝑆𝑁

𝑀𝐷𝐹: {𝑆1× 𝑆2 ×⋯× 𝑆𝑁} → 𝑂(𝑆1 ×⋯× 𝑆𝑁)

𝐴𝐷𝐹: {𝑆1∪ 𝑆2 ∪⋯∪ 𝑆𝑁} → 𝑂(𝑆1 +⋯+ |𝑆𝑁|),
∵ 𝑆𝑖∩ 𝑆𝑗 = {𝜙} ∀𝑖 ≠ 𝑗

𝑠∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝑠∈𝑆𝑓(𝑐, 𝑠)

Ƹ𝑠 = { Ƹ𝑠𝑖: Ƹ𝑠𝑖= 𝑎𝑟𝑔𝑚𝑎𝑥𝑠∈𝑆𝑖𝑔𝑖 𝑐, 𝑠 }

𝜓𝑐, Ƹ𝑠 = 𝜓(𝜏(… 𝜏 𝑐, Ƹ𝑠1 , … , Ƹ𝑠𝑁))

Composed Singular Prediction

(Left) Predictions (Right) Labels

CASE STUDY

𝑝∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝑝∈𝑆2𝑔2(𝑐, 𝑠)

𝑠∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝑠∈𝑆1𝑔1(𝑐, 𝑠)

Performance of Composed Singular Prediction for the 2 transformations,

Fig 1. Performance distribution of loop permutation for Conv2d

Fig 2. Performance distribution of loop tile and loop permutation for Conv2d

❑ Data locality optimization for Conv2d kernel
❑ Loop tiling and Loop permutation with 2 Singular models
❑ MLIR/LLVM-based compiler
❑ Static loop unroll and vectorization
❑ Generates code for Intel Xeon AVX-512 systems

Search space for training data generation consists of different
transformation schedule instances.

With MDF, the learning task is to find a function f such that,

An alternative search space Additive Domain Formulation (ADF) can be
defined as,

With ADF, the task is to learn a set of Singular Functions {𝒈𝒌} such that,

Loop Permutation Singular Model Accuracy

Intra-tile Performance Approximation

Training data generation for the tile model queries the loop permutation
model.

Further evidence for domain correlation is observed by evaluating a small
MDF (D2) test set against the model trained with ADF (D1) training data.

Performance of predicted tile schedules

Performance of predicted permutation schedules

Training Data Collection Time with ADF

Performance of solution schedule is, 𝜓𝑐,𝑠∗ = 𝜓(𝜏(𝑐, 𝑠∗)).

Conv2d in MLIR
Inputs are written in affine and std dialects. A custom LLVM pass
consumes the MLIR input, applies loop transformations, and generate
*.llvm for the selected architecture.

𝜓(𝜏 𝜏 𝑐, 𝑠∗ , 𝑝∗)

Feature Representation

Accuracy of the Permutation
model, measured in terms of
varying error tolerance bounds.

The performance value distributions
of permutation model’s predictions
and its corresponding labels for all
permutations of a select set of
Conv2d layers.

Performance speed-ups of
the tile model’s predictions
against untiled Conv2d
and Intel oneDNN library
implementation.

Performance of CSP-1 and CSP-5x5 schedules are compared against each
large Conv2d layer’s best untiled performance and MDF variant.

Performance of CSP-5x5 schedules are compared against Intel oneDNN’s
matching data layout implementation and the library’s best performing data
layout.

Performance of permutation schedules are compared against Intel
oneDNN’s matching data layout implementation and the library’s best
performing data layout.

Performance of a tiled Conv2d is approximated with its intra-tile sub-
nest’s performance.

Time spent evaluating the performance of all intra-tile permutations of a
given tile scheme, compared to its corresponding MDF data collection.

The permutation model computes,

The tile model computes,

