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HDF5, GDS VFD (GPUDirect Storage)
• Eliminates the CPU memory “bounce buffer”
• Direct path from GPU to Filesystem
• Frees up CPU cycles
• Enables more data paths for runtime system to 

delegate traffic

Our work takes a step toward providing a better quality 
of service. We introduce a runtime CUDA middleware 
that improves QoS for GPUs. We also introduce and 
study two new features of HDF5, GDS VFD and Async 
I/O. The former improves I/O latency while the latter 
improves and hides variability in I/O latency. We are 
researching two more orthogonal approaches to deal 
with bottlenecks in multi-tenant systems: GPUDirect 
Storage and Scientific Data Reduction. 

GPU Runtime Middleware
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Aggregate H5Dread with 8 GPUs on DGX A100 + Lustre

Many large-scale applications reach I/O 
bottlenecks before saturating the computation 
resources.  Thus, HPC systems provide caching 
locations to improve performance (shown 
above). Middleware I/O libraries have recently 
begun implementing asynchronous I/O to take 
advantage of these caching regions.  
Asynchronous I/O can dramatically improve 
application performance at the cost of memory 
and compute overhead used by background 
helper threads. 
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Naïvely scaling 
legacy workloads 
from the Rodinia 
benchmark suite 
across SMs on a 
modern GPU NVIDIA 
V100 does not scale.  

Space-sharing the 
GPU can lead to 
slowdowns even for 
simple vectorAdd 
kernel when 
oversubscribing a 
resource such as GPU 
Memory.

In current large-scale 
systems, the parallel file 
system and network are 
a shared resource 
across multiple 
workloads and users. 
This leads to poor quality 
of service on I/O 
synchronous requests as 
shown on the left with a 
VPIC-IO write 
benchmark on Summit.  

PILOT is CUDA runtime middleware that 
enables transparent space sharing similar 
to NVIDIA MPS (multi-process service). A 
high-level diagram is shown to the left, and 
a per-GPU diagram is shown to the right. 
With PILOT, we implement 3 modes that 
aim to improve QoS and reduce 
interconnect contention due to intensive 
kernels (flowcharts shown below).

Applications

High Level I/O Library (HDF5, netCDF, ADIOS)

Middleware (MPI-IO, PDC)

I/O Forwarding (Burst Buffer)

Parallel File System (Lustre, GPFS, …)

I/O Hardware (disk-based, SSD-based, …)

MemoryFit mode is a subscription-based 
scheduler that only launches a kernel when there 
is enough memory available to handle its 
allocations. It is the most conservative. 

ActiveMemoryFit mode launches a kernel 
immediately when ready and uses a 
monitor to preempt kernels when a 
memory threshold is triggered.  

MemoryAdvise mode utilizes pinned memory 
to avoid memory oversubscription scenarios. 
This mode does not require preemption and is 
the recommended choice based on our results. 

We found that many HPC applications have distinct computational and I/O 
phases. These applications follow an iterative approach and rely on the I/O 
phase to checkpoint state or visualization data. Treating the computation 
and I/O phases as distinct phases provides an opportunity to overlap them 
across iterations, as shown in the timelines above.

Impact and Ongoing

a) Ideal case for overlap

In this work, we identify key challenges that arise when sharing resources 
in an HPC context. We evaluate real world scenarios both at node-level 
and cluster-level. Using these insights, we propose middleware to 
mitigate and improve quality of service.

I/O Middleware

b) Partial overlap possible c) Slowdown scenario

Scientific Data Reduction
• Reduce storage requirements
• Reduce bandwidth requirements 
• Application-tuned lossy-based compression
• Integration with I/O libraries

Benchmarks co-run with memory-intensive kernel

Key Takeaways
● # page faults measured correlates with 

program runtime performance
● none of the mitigations schemes incur 

noticeable overhead when memory is not 
oversubscribed

● MemoryAdvise is an effective strategy

We use linear regression to model the I/
O performance across application 
iterations to decide when caching is 
required, as shown to the left. 

The plots below show the synchronous 
and asynchronous I/O performance for 
Nyx on the Summit. When the 
computation phase becomes too small, 
the transactional overhead of enabling 
asynchronous I/O dominates.
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