Wl Toward Scalable Middleware for Shared HPC Resources

John Ravi, Advisor: Dr. Michela Becchi, Co-aadvisor: Dr. Suren Byna
Department of Electrical and Computer Engineering, North Carolina State University

Overview GPU Runtime Middleware

2 A ﬁ

é 10" 3 o - /-\ %
- Applications . GPU g 0 %
g : (w2) (ao0) PILOT is CUDA runtime middleware that : ““M[L :
Bl High Level 1O Library (HDF5, netCDF, ADIOS) -) o) @) @B enables transparent space sharing similar
[. . hs3d gesummv backprop 2dconvo | gaussian bfs lavamd corr partfilter nn
- - \ / to NVIDIAMPS (multi-process service). A / (a) 75% Memory Utilization
2 - high-level diagram is shown to the left, and | soeing O I TN T W M
- onnection Manager : . : _ MPS PILOT base PILOT MFit PILOT AMFit PILOT MAdvise
- Middleware (MPI-10, PDC) - a per-GPU diagram is shown to the right. = L = = =
. . = A 6
: O / / [l \\ With P”_OT, we Implement 3 modes that 1 tGDDRSX(547.6GB/S)orHBM (900 GB/S)I 1 o A L, A a4 4, a N A Fo’
1% : : PCle 3.0 Memory Controller £ - A A N A E"
/O Forwarding (Burst Buffer) aim to improve Qos and reduce e L : " o 2
interconnect contention due to intensive UVM Driver : < 5
kernels (flowcharts shown below). 2 E
Parallel File System (Lustre, GPFS, .
_ CUDA Driver Runtime AP! (b) 100% Memory Utilization
|/O Hardware (disk-based, SSD-based, ...) cPUL ePU2 SPUN
:. .. : -- 101 - - MPS - PILOT base - PILOT MFit - PllLOTAMFit E PILOT MAdvise 108
| Erecute Al Poll Active Y . A A A a4 4 s A , A 6
: : : : : (| Ereouwe A1 ol Memory : Aot £ 2
In this work, we identify key challenges that arise when sharing resources ettt : Usage | B | | "o _
in an HPC context. We evaluate real world scenarios both at node-level J‘ s s e
. Usage . Preempt : 2 2 o
and cluster-level. Using these insights, we propose middleware to T N : No Kemelwith | - : : :
- Wait Time for >* . memor . in s
mltlgate and Improve quallty Of SerVICe- : e I atn app : E J E Unpin — A”(chatic(a)zgon E hs3d gesumm Eba)ckprlopSZSc;volliqussian bfs IJlat\/fain.d ;orr partfilter nn
» enough memory Wait : : : Allocation on Host Memory | - C o Vlemory 111zation
available Y'es ERCUIENE S there enough Host memory o] :
cemels i | : e : I) ! : Benchmarks co-run with memory-intensive kernel
Yes enough
Y memory n 's there-
e Kerme or no kernels | - : il : vV Key Takeaways
: . i : | | Rexeaue | : Yes : e # page faults measured correlates with
e eeeectestisiessesseseeectisiieressescesctentinrenrensaaaans : Gl e I : program runtime performance
C h al Ie N g es MemoryFit mode is a subscription-based Act/veMemoryF/t mode launches a kernel MemoryAdvise mode utilizes pinned memory e none of the mitigations schemes incur
scheduler that only launches a kernel when there immediately when ready and uses a to avoid memory oversubscription scenarios. gsgfsefggﬁr?gee(;head when memory is not
IS enough memory available to handle its monitor to preempt kernels when a This mode does not require preemption and is o _
allocations. It is the most conservative. memory threshold is triggered. the recommended choice based on our results. e MemoryAdvise is an effective strategy
- 15 # SMs: 20 40 60 Nalvely scaling
Y | - .. - - legacy workloads
g_g from the Rodinia
-] e U I/0 Middl Impact and Ongoing
Q
Q.
A modern GPU NVIDIA I ewa re - Synchronous Synchronous Synchronous ac a n n OI n
R P o & S e V100 does notscale e R
< W ?,0 &% o @ el o _
@C‘Q © ('é‘\ N 0;&)9 90&1&«0 &00\ GPU Private Memory | CPU Private Memory e ZSYISIIGNEYS o Asynchronous Our work takes a step toward providing a better quality
x / oFlhlodﬂn;’n;’n:;nn Smﬁtd“n“nn“nn“nnn of service. We introduce a runtime CUDA middleware
------------------- g (el e e e, . that improves QoS for GPUs. We also introduce and
Time
@‘e ocal Storage (”"RA a) ldeal case for overlap b) Partial overlap possible ¢) Slowdown scenario study two new features of HDF5, GDS VFD and Async

Bl MPS on Pascal B MPS on Volta B8 PILOT on Volta

I/0. The former improves /O latency while the latter
improves and hides variability in 1/0 latency. We are

129.2% 170.8% g
06 e — 108 @ We found that many HPC applications have distinct computational and I/O researching two more orthogonal approaches to deal
mm.l.' m"’"l phases. These ap_phcatlons foI_Iow an |’Ferat|ve approaeh and rely on the o with bottlenecks in multi-tenant systems: GPUDirect
-11111-“

Space-sharing the
GPU can lead to
slowdowns even for
simple vectorAdd
kernel when
oversubscribing a
resource such as GPU

phase to checkpoint state or visualization data. Treating the computation Storage and Scientific Data Reduction
@ and I/O phases as distinct phases provides an opportunity to overlap them J '

m across iterations, as shown in the timelines above. HDF5, GDS VFD (GPUDirect Storage)
- Eliminates the CPU memory “bounce buffer”

Slowdown over
Isolated execution
V-t
[o

Memory. Worklng Memory Size of Memory Intensive Kernel (GB) o - :) :
y Many large-scale applications reach 1/0O . We use linear regression to model the I/ - Direct path from GPU to Filesystem
bottlenecks before saturating the computation easrec /0 = & —— O performance across application - Frees up CPU cycles
resources. Thus, HPC systems provide caching \L Bandwiths iterations to decide when caching is - Enables more data paths for runtime system to
locations to improve performance (shown required, as shown to the left. delegate traffic
In current large-scale above). Middleware 1/O libraries have recently . —
f": . Synchronous 1/O Asynchronous 1/O systems, the parallel file begun implementing asynchronous 1/O to take E I . _vovssion o ntimester(s) The plots below show the synchronous Aggregate H5Dread with 8 GPUs on DGX A100 + Lustre
% 104? O Q SyStem and network are advantage Of these Cachlng reglons g 1‘1 N " i h] and asynChrOnOUS I/O pel’fOl’manCe fOr .
S —~10 1 O hared Asynchronous I/O can dramatically improve T Nyx on the Summit. When the ©40
IR o a shared resource i mputation bh becomes t mall oa)
5@ 10° z Itio| application performance at the cost of memory computation phase becomes 100 smatl, M 20
=9 : Q across muftiple the transactional overhead of enablin =
© : . . helper threads. asynchronous |/O dominates. 7
< 96 192 384 #7EA?DI R1a5n?g 3072 6144 12288 of service on |1/O # 1/0O Threads
S nChronOUS re UeStS as < -.-‘Pred?cted Synchronous Duration [1Measured Synchronous I/O [IMeasured Synchronous Computation . . .
S?l]own on the Ie(.?.t Wlth g -g 104_; -):Predlcted Asynchronous Duration [ZZMeasured Asynchronous I/O0 [ZZ Measured Asynchronous Computation SCIentlfIC Data Reductlon
VPIC-IO write 53 .0 §£75- _q -;:'»“"V - Reduce storage requwer_nents
benchmark on Summit %3102; %-% 50- =Rt e T==% ; % - Reduce bandwidth requirements
' 4 | | | | &325- % % % - Application-tuned lossy-based compression
< 384 768 1536 3072 192 96 48 >4 12 6 L + Integration with I/O libraries
MPI Ranks

of time-steps per computation phase

Publications Acknowledgements

1] J. Ravi, S. Byna and Q. Koziol, "GPU Direct I/0O with HDF5," 2020 IEEE/ACM Fifth International Parallel Data Systems Workshop (PDSW), 2020, pp. 28-33, doi: 10.1109/PDSW51947.2020.00010. ~ \
2 J. Ravi, T. Nguyen, H. Zhou and M. Becchi, "PILOT: a Runtime System to Manage Multi-tenant GPU Unified Memory Footprint," 2021 IEEE 28th International Conference on High Performance | lﬁ \ EXASCALE
Computing, Data, and Analytics (HiPC), 2021, pp. 442-447, doi: 10.1109/HiPC53243.2021.00063. fereeer ‘ E\(l I: gg'&l"fé-'c"'_l'_'\‘s
3] H. Tang, Q. Koziol, J. Ravi and S. Byna, "Transparent Asynchronous Parallel I/O Using Background Threads," in IEEE Transactions on Parallel and Distributed Systems, vol. 33, no. 4, pp.

891-902, 1 April 2022, doi: 10.1109/TPDS.2021.3090322. BERKELEY LAB
CNS-1812727

