
Toward Scalable Middleware for Shared HPC Resources
John Ravi, Advisor: Dr. Michela Becchi, Co-advisor: Dr. Suren Byna
Department of Electrical and Computer Engineering, North Carolina State University

Overview

Acknowledgements

HDF5, GDS VFD (GPUDirect Storage)
• Eliminates the CPU memory “bounce buffer”
• Direct path from GPU to Filesystem
• Frees up CPU cycles
• Enables more data paths for runtime system to

delegate traffic

Our work takes a step toward providing a better quality
of service. We introduce a runtime CUDA middleware
that improves QoS for GPUs. We also introduce and
study two new features of HDF5, GDS VFD and Async
I/O. The former improves I/O latency while the latter
improves and hides variability in I/O latency. We are
researching two more orthogonal approaches to deal
with bottlenecks in multi-tenant systems: GPUDirect
Storage and Scientific Data Reduction.

GPU Runtime Middleware

Challenges

Publications
[1] J. Ravi, S. Byna and Q. Koziol, "GPU Direct I/O with HDF5," 2020 IEEE/ACM Fifth International Parallel Data Systems Workshop (PDSW), 2020, pp. 28-33, doi: 10.1109/PDSW51947.2020.00010.
[2] J. Ravi, T. Nguyen, H. Zhou and M. Becchi, "PILOT: a Runtime System to Manage Multi-tenant GPU Unified Memory Footprint," 2021 IEEE 28th International Conference on High Performance
Computing, Data, and Analytics (HiPC), 2021, pp. 442-447, doi: 10.1109/HiPC53243.2021.00063.
[3] H. Tang, Q. Koziol, J. Ravi and S. Byna, "Transparent Asynchronous Parallel I/O Using Background Threads," in IEEE Transactions on Parallel and Distributed Systems, vol. 33, no. 4, pp.
891-902, 1 April 2022, doi: 10.1109/TPDS.2021.3090322.

Aggregate H5Dread with 8 GPUs on DGX A100 + Lustre

Many large-scale applications reach I/O
bottlenecks before saturating the computation
resources. Thus, HPC systems provide caching
locations to improve performance (shown
above). Middleware I/O libraries have recently
begun implementing asynchronous I/O to take
advantage of these caching regions.
Asynchronous I/O can dramatically improve
application performance at the cost of memory
and compute overhead used by background
helper threads.

GPU

CPU

Memory Controller

Host
Memory

FE Library

CUDA
Runtime +

UVM Driver
Global Memory

PCIe 3.0
16 GB/s

L2 Cache
PILOT

App 0
App 1
App 2

App 0
App 1
App 2

sync

FE Library

GDDR5X (547.6 GB/s) or HBM (900 GB/s)

SM

L1 / SHEM

SM

L1 / SHEM

SM

L1 / SHEM

SM

L1 / SHEM

SM

L1 / SHEM

SM

L1 / SHEM

SM

L1 / SHEM

SM

L1 / SHEM

SM

L1 / SHEM

SM

L1 / SHEM

SM

L1 / SHEM

SM

L1 / SHEM

VGPU1

VGPU2

Apps
FE Library

Connection
Manager Scheduling

Thread

Naïvely scaling
legacy workloads
from the Rodinia
benchmark suite
across SMs on a
modern GPU NVIDIA
V100 does not scale.

Space-sharing the
GPU can lead to
slowdowns even for
simple vectorAdd
kernel when
oversubscribing a
resource such as GPU
Memory.

In current large-scale
systems, the parallel file
system and network are
a shared resource
across multiple
workloads and users.
This leads to poor quality
of service on I/O
synchronous requests as
shown on the left with a
VPIC-IO write
benchmark on Summit.

PILOT is CUDA runtime middleware that
enables transparent space sharing similar
to NVIDIA MPS (multi-process service). A
high-level diagram is shown to the left, and
a per-GPU diagram is shown to the right.
With PILOT, we implement 3 modes that
aim to improve QoS and reduce
interconnect contention due to intensive
kernels (flowcharts shown below).

Applications

High Level I/O Library (HDF5, netCDF, ADIOS)

Middleware (MPI-IO, PDC)

I/O Forwarding (Burst Buffer)

Parallel File System (Lustre, GPFS, …)

I/O Hardware (disk-based, SSD-based, …)

MemoryFit mode is a subscription-based
scheduler that only launches a kernel when there
is enough memory available to handle its
allocations. It is the most conservative.

ActiveMemoryFit mode launches a kernel
immediately when ready and uses a
monitor to preempt kernels when a
memory threshold is triggered.

MemoryAdvise mode utilizes pinned memory
to avoid memory oversubscription scenarios.
This mode does not require preemption and is
the recommended choice based on our results.

We found that many HPC applications have distinct computational and I/O
phases. These applications follow an iterative approach and rely on the I/O
phase to checkpoint state or visualization data. Treating the computation
and I/O phases as distinct phases provides an opportunity to overlap them
across iterations, as shown in the timelines above.

Impact and Ongoing

a) Ideal case for overlap

In this work, we identify key challenges that arise when sharing resources
in an HPC context. We evaluate real world scenarios both at node-level
and cluster-level. Using these insights, we propose middleware to
mitigate and improve quality of service.

I/O Middleware

b) Partial overlap possible c) Slowdown scenario

Scientific Data Reduction
• Reduce storage requirements
• Reduce bandwidth requirements
• Application-tuned lossy-based compression
• Integration with I/O libraries

Benchmarks co-run with memory-intensive kernel

Key Takeaways
● # page faults measured correlates with

program runtime performance
● none of the mitigations schemes incur

noticeable overhead when memory is not
oversubscribed

● MemoryAdvise is an effective strategy

We use linear regression to model the I/
O performance across application
iterations to decide when caching is
required, as shown to the left.

The plots below show the synchronous
and asynchronous I/O performance for
Nyx on the Summit. When the
computation phase becomes too small,
the transactional overhead of enabling
asynchronous I/O dominates.

CNS-1812727

