
Motivation
Task scheduling on Field Programmable Gate Arrays 
(FPGAs) is primarily implemented using Partial 
Reconfiguration (PR). The scheduling approaches work on 
PR has a high development overhead, is hardly portable 
and occupies FPGA resources [4].

We want to understand task scheduling on FPGAs without 
the need for PR, compare appropriate approaches and 
analyze them systematically.

Inputs

Machine models
Machine models are build around Processing
Elements (PEs). Each PE can execute
at least one task and has a set of properties.

● Properties describe the capabilities of a PE.
● They are based on

● implications of the scheduling algorithm and
● the target hardware and software.

● The models are an abstraction over very different
task scheduling approaches.

A set of PEs and their properties is a machine model.

Task graphs
Task graphs are generated from trace data 
and annotated with FPGA-specific
information.

● Automatic generation from
for example OpenCL traces.

● Dependencies contain
data movement cost.

● Task cost for each property
can be integrated.

● Multiple traces can be
combined for better
accuracy. 

Predicates
First-order predicates restrict the set of valid schedules. 
Predicates can be trivially translated to constraint 
programming environments.

Example
Property reconfiguration overhead          describes the time 
overhead for configuring the FPGA to execute a task. The 
start time             on PE p must be adjusted accordingly:

Each PE-property maps to at least one predicate. A 
machine model can be automatically converted to a set of 
predicates.

Schedules
Schedules specify where and when a task is executed.
● Cost functions provide comparability, e.g. makespan, energy usage.
● Best-case scenarios are obtained using constraint programming environments.

Result highlights
● High-level programming without PR has a low percentage

overhead, while easing the development and improving
the portability.

● Reconfiguration-aware dynamic scheduling algorithms can
generate near-optimal schedules in polynomial time.

● Transparent integration into high-level
programming environments like OpenCL is possible.

Ongoing
We are still investigating the optimization of high level code based on schedules.

Outputs and Results
Two types of results from our approach:
● statistical analysis of valid schedules
● inductive proofs for lower bounds,

achievable parallelism, …

The hardware-agnostic model allows
straightforward comparison of
distinguished scheduling algorithms and
FPGAs [2].
The left figure shows the speedup for an identical model except for PR support.
The right figure depicts lower bounds for some models/alg. depending on the # of tasks. 
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Algorithms
● over 25 years of 

reasearch for task 
scheduling on 
FPGAs

● different levels of 
abstraction

● focus on static 
algorithms

PE

Class Property Domain Default Example

Configuration Bandwidth bit/s ∞ 400 MB/s

Concurrency N ∞ 2

Placement Location {} {slot0, slot1}

Size N 0 12 MB

Dependency Exclusivity PEs {} {p_3, p_8}

Inclusivity PEs {} {p_1}

Function Quantity N 1 2

Type Task {} {v2, v_4}

Vectorization N 1 4

Overhead Start s 0 1 ms

Reconfiguration s 0 12 ms

Performance Bandwidth bit/s ∞ 12 GB/s

Computation s/Task 0 30ms/v_3

Task 1
w=2
s=1

Task 2
w=3
s=2

34

Task 3
w=2
s=1

12
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Traces
● easily obtainable 

from a host 
runtime

● require one event 
per task

● agnostic to 
programming 
models

Hardware
● large influence on 

possible schedules
● hardly comparable 

between models 
and vendors

● possibly large 
bitstreams

● heterogeneous 
FPGAs
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Tracing
We demonstrate automatic
generation of task graphs
with traces from the
OpenDwarf benchmark suite
with OpenCL [1].

● Generating traces is done with an adapted
version of the Intercept Layer for OpenCL
Applications [6].

● Traces give insights into PE properties.
● Supports automatic dependency detection from CL_EVENT arguments.
● Supports data movement detection from clEnqueue(Read|Write)Buffer calls.
● No manual action required.

T
E

C
H

N
O

L
O

G
Y

__kernel void lud_internal(__global float *m, int matrix_dim, int offset) {
    int global_row_id = offset + (get_group_id(1)+1)*BLOCK_SIZE;
    int global_col_id = offset + (get_group_id(0)+1)*BLOCK_SIZE;
    float sum = 0;
    for (int i=0; i < BLOCK_SIZE; i++)
        sum += m[(global_row_id+get_local_id(1))*matrix_dim+offset+i] *
 m[(offset+i)*matrix_dim+global_col_id+get_local_id(0)];
    m[(global_row_id+get_local_id(1))*matrix_dim+global_col_id+get_local_id(0)] -= 
sum;
}

 <<<< clSetKernelArg -> CL_SUCCESS
  >>>> clEnqueueNDRangeKernel( lud_internal ): queue = 0x7fda74a6c4b8, 
kernel = 0x162c210,

global_work_size = < 16 >, local_work_size = < 16 >
  <<<< clEnqueueNDRangeKernel created event = 0x27e9c20 -> CL_SUCCESS
  >>>> clFinish: queue = 0x7fda74a6c4b8
  <<<< clFinish -> CL_SUCCESS
Device Timeline for lud_internal (enqueue 379)

2993788267098459 ns (queued),
2993788267168510 ns (submit),
2993788267181221 ns (start),
2993788267408694 ns (end)                  

Simulation
We introduce two reconfiguration-aware polynomial time scheduling algorithms without PR:

● A clustering algorithm that decomposes the task graph
into clusters, each representing a single bitstream. 

● A list scheduling algorithm with a lookahead that counters
„flip-flopping“ of active bitstreams.

A framework build with C++17 and the Boost Graph Library
generates schedules in milliseconds.

The figure to the right depicts an example schedule for a
3x3 blocked LU-decomposition. Time flows from top to
bottom:
Each column represents a PE,
each rectangle a schedule task an
its color the bitstream.
Reconfigurations are represented as yellow lines.
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Constraint programming
The predicates generated from the machine model can be trivially converted to constraint 
programming (CP) inputs. A software generates valid schedules for a given set of predicates.

● We provide case studies for two machine models: one with and one without using PR.
● CP can be used to find optimal solutions:

● Valuable as a lower bound for polynomial time algorithms.
● Easy comparability of PE properties and what-if scenarios.

● Current implementation using ORTools [3].
● More flexible version in OR-Tools is in-progress.
● Only viable for small task graphs.

% Start times of tasks
array[V] of var int: t_s;
% Finish times of tasks
array[V] of var int: t_f;
% PE a task runs on
array[V] of var int: process;
array[V] of string: tasklabels;
predicate no_overlap(var int: v1, var int: v2) =
        t_f[v1] < t_s[v2] \/ t_s[v1] > t_f[v2];
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Key Contributions
1.Flexible and arbitrarily accurate machine 

models for FPGA-based accelerators.
2.Automated derivation of CP programs from 

machine model.
3.Three heuristic-based polynomial-time 

scheduling algorithms.
4.Automated recommendations for HLS code.
5.Traces of OpenDwarf executions on FPGAs.
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