Pascal Jungblut, LMU Munich, Germany

moms Task Scheduling on FPGA-Based Accelerators without Partial Reconfiguration Advisor: Dieter Kranzimille

UNIVERSITAT
MUNCHEN

__kernel void lud_internal(__global float *m, int matrix_dim, int offset) {
int global_row_id = offset + (get_group_id(1)+1)*BLOCK_SIZE
int global_col_id = offset + (get_group_id(0)+1)*BLOCK_SIZE;
float sum = 0;

I " I for (int i=0; i < BLOCK_SIZE; i++)
M Ot I Va tl O n I n p u tS Tra C I n g sum += m[(global_row_id+get_local_id(1))*matrix_dim+offset+i] *
Task scheduling on Field Programmable Gate Arrays We demonstrate automatic C(elob LG AR TG PR R R RO ROV e
(FPGAS) is primarily implemented using Partial i | generation of task graphs Sum;m SO e clSetKernelArg -> CL_SUCCESS
Reconfiguration (PR) The Scheduling approaches work on Wlth traces from the } >>>> ElEnqueueNDRangeKernel(lud_internal): queue = 0x7fda74a6c4b8,
PR has a high development overhead, is hardly portable Al 1th Hard T OpenDwarf benchmark suite kernegllo_loa@lﬂw?rckz1s®i’ze = < 16 >, local_work_size = < 16 >
: ' go rl mS a r Wa re races . <L clEn_queue_NDRangeKernel ’created_ even_t = Qx27e9c20 -> CL_SUCCESS
and occupies FPGA resources [4]. : : : with OpenCL [1]. >>>> clFinish: queue = 8x7fda74abedbs
b ot 1 P * over 25 years of * large influence on * easily obtainable e e s L S
- C1g. YF,) c1g9. YQ reasearch for task pQSSib|e schedules from a host : : , Device Timeline for lud_internal (enqueue 379)
O 3 /7 7/'_ scheduling on hardly comparable runtime * Generating traces is done with an adapted 2993788267098459 ns (queued), _
= - ° : 2993788267168510 (submit), ‘
” > / %—' FPGAs between models * require one event version O.f the Intercept Layer for OpenCL 2993786267181221 ns (start). / ™
% > / 6 * different levels of and vendors er task Applications fol. 93788207A0%634 s Lend) O CL
| // 4 % _ bstraction e bossibly large . g ostic to * Traces give insights into PE properties. pen
time . P y 1arg J . * Supports automatic dependency detection _
* focus on static bitstreams programming PP P y Y.
We want to understand task scheduling on FPGAs without Jlaorithms e heteroaeneous models * Supports data movement detection from clEnqueue(Read|Write)Buffer calls.
the need for PR, compare appropriate approaches and J FPGAsg * No manual action required.

analyze them systematically.

Machine models - Task graphs Simulation

Machine models are build around Processing . Task graphs are generated from trace data We introduce two reconfiguration-aware polynomial time scheduling algorithms without PR:
Elements (PEs). Each PE can execute Class Property Domain Default ~ Example and annotated with FPGA-specific
at IeaSt one taSk and haS a set Of pI‘OpertIeS Configuration Bandwidth bit/s oo 400 MB/s InfOI’matIOI’l o A Clustering algorithm that decomposes the task graph
| Concurrency N 00 2 into clusters, each representing a single bitstream. R
* Properties describe the capabilities of a PE. Placement Location {} {slot0, slot1} Automatic generation from « A list scheduling algorithm with a lookahead that counters L_ _
. They are l?ased on | _ Size N 0 12 MB for example_ OpenCL traces. — .flip-flopping” of active bitstreams. oo
* implications of the scheduling algorithm and Dependency Exclusivity PEs 0 (p.3,p.8 * Dependencies contain Task 1 VS: (0,1,0)
* the target hardware and software. | Tneluefii PEs 0 (1) data movement cost. A framework build with C++17 and the Boost Graph Library 0,0.2)
* The models are an abstraction over very different ¢ | .o, Quantity N . 5 * Task cost for each property o generates schedules in milliseconds. (0,2.0)
task scheduling approaches. T can be integrated. w3 .
ype Task {} {v2, v_4} Multiple t b Task 2 - 12 Reconf!g #2 0,1,1
. . . Vectorization N 1 4 u :op € C:a]lccesl.jcan € — The figure to the right depicts an example schedule for a Reconfig #3 (0,1,2)
A set of PEs and therr properties is a machine model. | .~~~ . s 0 1 ms combined for betier \i 3x3 blocked LU-decomposition. Time flows from top to Reconfig #4 02,
| | accuracy. bottom: FEEOMITE 3 (0,2,2)
Reconfiguration S 0 12 ms S ¥
Performance Bandwidth bit/s 00 12 GB/s = Each column represents a PE, Sl
Computation =) 0 ez each rectangle a schedule task an (1.1,2)
- its color the bitstream. TREY
Reconfigurations are represented as yellow lines. T —
Resoiig 7
Predicates Schedules
First-order predicates restrict the set of valid schedules. Schedules specify where and when a task is executed.
Predicates can be trivially translated to constraint * Cost functions provide comparability, e.g. makespan, energy usage. . .
programming environments. * Best-case scenarios are obtained using constraint programming environments. CO N Stra | nt p r()g rammin g
Example Result highlights The predicates generated from the machine model can be trivially converted to constraint
Property reconfiguration overhead P, ., describes the time » High-level programming without PR has a low percentage T[1 programming (CP) inputs. A software generates valid schedules for a given set of predicates.
overhead for configuring the FPGA to execute a task. The — overhead, while easing the development and improving - , , , . , , ,
start time ¢+ (v, p) on PE p must be adjusted accordingly: the portability. ’) 2 We provide case stqdles fo.r two machlne.models. one with and one without using PR. (\
Yo €V ta(v,p) > (v, p) + P * Reconfiguration-aware dynamic scheduling algorithms can i L * CP can be used to find optimal solutions: | In
TS 7p — T 7p o,T generate near_optimal Schedules in polynomial time. q) 3 q);:;///’//":f ¢ Va|Uab|e dS d IO.V\{er bound fOr pOl.ynOmIa| tlme algOrltth. % Start times Of.taSkS
Each PE-property maps to at least one predicate. A » Transparent integration into high-level - &3 * Easy comparability of PE properties and what-if scenarios. ey Y @F R 2T G
machine model can be automatically converted to a set of programming environments like OpenCL is possible.] w * Current implementation using ORTools [3]. array[V] of var int: t_f;
predicates. \/ v * More flexible version in OR-Tools is in-progress. % PE ?Vgas1l§ uns on
. . arra OoT var 1nt: Focess,;
Ongoing * Only viable for small task graphs. arra§[v1 of string: tgsklgbels; |
We are still investigating the optimization of high level code based on schedules. PrEERiEs. Mo EUerlen(VaEr Huts Y, Vel At v2) =

t_flv1l] < t_s[v2] \/ t_s[v1] > t_f[v2];

Key Contributions Outputs and Results ;. i Contact References

1.F|eXib|e and al‘bitrarily accurate machine TWO typeS Of reSUItS from our approach: o 1.4- = 40000 - : Pascal Jungblut 1[11] Krommyo!as, Konstan.tinqs, Wu-chun Feng, Christos D. Antonopoglos, and Nikolao; Bellas.
. = 4= - . = 30000 - , Alg_ Ope.ndwarfs. Characterlza}tlon of Dwgrf-Based Benchmarks on Fixed and Reconfigurable
models for FPGA-based accelerators. statistical anaIySIS of valid schedules S 1.3- = | cluster Architectures.” Journal of Signal Processing Systems 85, no. 3 (2016): 373-92.
: : o | I O i : . - [2] Jungblut, Pascal, and Dieter Kranzimiuller. “Optimal Schedules for High-Level Programming
2.AUt0mated denVathn Of CP programs from In?}pCtl\()T proo.lils :‘Of Iower bounds’ 8_ 1.2 R S 8 20000 ! Iralinizinc paSCal.JUﬂgblUt@nm.lfl.lmU.de Environments on FPGAs with Constraint Programming,” 96-99. IEEE Computer Society, 2022.
' acnievapie paralielism, i . _ ' [3] Nethercote, Nicholas, Peter J. Stuckey, Ralph Becket, Sebastian Brand, Gregory J. Duck, and
maChIne mOdel . . p ?11- 10000 ! Pr http//mnm team°org/~Jungb|Ut Guido Tack. “MiniZinc: Towards a Standard CP Modelling Language.” In International Conference
3.Three heuristic-based pOIynomlaI'tlme 4 0 : http://github / i on Principles and Practice of Constraint Programming, 529-43. Springer, 2007.
heduli lgorith The hardware-agnostic model allows +O ' ! 0 50 100 150 200 p-//gIthub.com/pascall [4] Vipin, Kizheppatt, and Suhaib A. Fahmy. “FPGA Dynamic and Partial Reconfiguration: A Survey
schedu Ing a gorl ms. i] PR R task of Architectures, Methods, and Applications.” ACM Computing Surveys (CSUR) 51, no. 4 (2018):
4.Automated recommendations for HLS code. Si-:ra-lghtf-orward Companson Of' model T LMU Munich 35_]3cj.ungblut Pascal, and Dieter Kranzimiller. “Dynamic Spatial Multiplexing on FPGAs with
5 Traces of Opeanarf executions on FPGAS. dlstlngwshed SChedU“ng algorlthms and T Oettingenstr 67 OpenCL.” In International Symposium on Appl‘ied Reconfigurable Computing, 265-74. Springer,
FPGAs [2]. ' 2021,

[6] https://github.com/intel/opencl-intercept-layer

The left figure shows the speedup for an identical model except for PR support. 81369 Munich, Germany

The right figure depicts lower bounds for some models/alg. depending on the # of tasks.

mailto:pascal.jungblut@nm.ifi.lmu.de
http://mnm-team.org/~jungblut
http://github.com/pascalj
https://github.com/intel/opencl-intercept-layer

