
Motivation
Task scheduling on Field Programmable Gate Arrays
(FPGAs) is primarily implemented using Partial
Reconfiguration (PR). The scheduling approaches work on
PR has a high development overhead, is hardly portable
and occupies FPGA resources [4].

We want to understand task scheduling on FPGAs without
the need for PR, compare appropriate approaches and
analyze them systematically.

Inputs

Machine models
Machine models are build around Processing
Elements (PEs). Each PE can execute
at least one task and has a set of properties.

● Properties describe the capabilities of a PE.
● They are based on

● implications of the scheduling algorithm and
● the target hardware and software.

● The models are an abstraction over very different
task scheduling approaches.

A set of PEs and their properties is a machine model.

Task graphs
Task graphs are generated from trace data
and annotated with FPGA-specific
information.

● Automatic generation from
for example OpenCL traces.

● Dependencies contain
data movement cost.

● Task cost for each property
can be integrated.

● Multiple traces can be
combined for better
accuracy.

Predicates
First-order predicates restrict the set of valid schedules.
Predicates can be trivially translated to constraint
programming environments.

Example
Property reconfiguration overhead describes the time
overhead for configuring the FPGA to execute a task. The
start time on PE p must be adjusted accordingly:

Each PE-property maps to at least one predicate. A
machine model can be automatically converted to a set of
predicates.

Schedules
Schedules specify where and when a task is executed.
● Cost functions provide comparability, e.g. makespan, energy usage.
● Best-case scenarios are obtained using constraint programming environments.

Result highlights
● High-level programming without PR has a low percentage

overhead, while easing the development and improving
the portability.

● Reconfiguration-aware dynamic scheduling algorithms can
generate near-optimal schedules in polynomial time.

● Transparent integration into high-level
programming environments like OpenCL is possible.

Ongoing
We are still investigating the optimization of high level code based on schedules.

Outputs and Results
Two types of results from our approach:
● statistical analysis of valid schedules
● inductive proofs for lower bounds,

achievable parallelism, …

The hardware-agnostic model allows
straightforward comparison of
distinguished scheduling algorithms and
FPGAs [2].
The left figure shows the speedup for an identical model except for PR support.
The right figure depicts lower bounds for some models/alg. depending on the # of tasks.

cfg. 1 cfg. 2

time

1

22
3

4

5
6

7

ρ ρ

ar
ea

Algorithms
● over 25 years of

reasearch for task
scheduling on
FPGAs

● different levels of
abstraction

● focus on static
algorithms

PE

Class Property Domain Default Example

Configuration Bandwidth bit/s ∞ 400 MB/s

Concurrency N ∞ 2

Placement Location {} {slot0, slot1}

Size N 0 12 MB

Dependency Exclusivity PEs {} {p_3, p_8}

Inclusivity PEs {} {p_1}

Function Quantity N 1 2

Type Task {} {v2, v_4}

Vectorization N 1 4

Overhead Start s 0 1 ms

Reconfiguration s 0 12 ms

Performance Bandwidth bit/s ∞ 12 GB/s

Computation s/Task 0 30ms/v_3

Task 1
w=2
s=1

Task 2
w=3
s=2

34

Task 3
w=2
s=1

12

5

Traces
● easily obtainable

from a host
runtime

● require one event
per task

● agnostic to
programming
models

Hardware
● large influence on

possible schedules
● hardly comparable

between models
and vendors

● possibly large
bitstreams

● heterogeneous
FPGAs

0

10000

20000

30000

40000

0 50 100 150 200
ntasks

co
st

Alg.
cluster
lsl
minizinc
pr

Contact
Pascal Jungblut

pascal.jungblut@nm.ifi.lmu.de
http://mnm-team.org/~jungblut
http://github.com/pascalj

LMU Munich
Oettingenstr. 67
81369 Munich, Germany

1.0

1.1

1.2

1.3

1.4

1.5

PR R

model

sp
ee

du
p

tim
e

1

2

3

tim
e

1

2

3

M
E

T
H

O
D

O
L

O
G

Y

Tracing
We demonstrate automatic
generation of task graphs
with traces from the
OpenDwarf benchmark suite
with OpenCL [1].

● Generating traces is done with an adapted
version of the Intercept Layer for OpenCL
Applications [6].

● Traces give insights into PE properties.
● Supports automatic dependency detection from CL_EVENT arguments.
● Supports data movement detection from clEnqueue(Read|Write)Buffer calls.
● No manual action required.

T
E

C
H

N
O

L
O

G
Y

__kernel void lud_internal(__global float *m, int matrix_dim, int offset) {
 int global_row_id = offset + (get_group_id(1)+1)*BLOCK_SIZE;
 int global_col_id = offset + (get_group_id(0)+1)*BLOCK_SIZE;
 float sum = 0;
 for (int i=0; i < BLOCK_SIZE; i++)
 sum += m[(global_row_id+get_local_id(1))*matrix_dim+offset+i] *
 m[(offset+i)*matrix_dim+global_col_id+get_local_id(0)];
 m[(global_row_id+get_local_id(1))*matrix_dim+global_col_id+get_local_id(0)] -=
sum;
}

 <<<< clSetKernelArg -> CL_SUCCESS
 >>>> clEnqueueNDRangeKernel(lud_internal): queue = 0x7fda74a6c4b8,
kernel = 0x162c210,

global_work_size = < 16 >, local_work_size = < 16 >
 <<<< clEnqueueNDRangeKernel created event = 0x27e9c20 -> CL_SUCCESS
 >>>> clFinish: queue = 0x7fda74a6c4b8
 <<<< clFinish -> CL_SUCCESS
Device Timeline for lud_internal (enqueue 379)

2993788267098459 ns (queued),
2993788267168510 ns (submit),
2993788267181221 ns (start),
2993788267408694 ns (end)

Simulation
We introduce two reconfiguration-aware polynomial time scheduling algorithms without PR:

● A clustering algorithm that decomposes the task graph
into clusters, each representing a single bitstream.

● A list scheduling algorithm with a lookahead that counters
„flip-flopping“ of active bitstreams.

A framework build with C++17 and the Boost Graph Library
generates schedules in milliseconds.

The figure to the right depicts an example schedule for a
3x3 blocked LU-decomposition. Time flows from top to
bottom:
Each column represents a PE,
each rectangle a schedule task an
its color the bitstream.
Reconfigurations are represented as yellow lines.

Reconfig #1

Reconfig #2
Reconfig #3

Reconfig #4
Reconfig #5

Reconfig #6
Reconfig #7

(0,0,0)

(1,1,1)

(2,2,2)

(0,0,1)

(0,1,0)

(0,0,2)

(0,2,0)

(1,1,2)

(1,2,1)

(0,1,2)

(0,2,2)

(0,1,1)

(0,2,1)

(1,2,2)

Constraint programming
The predicates generated from the machine model can be trivially converted to constraint
programming (CP) inputs. A software generates valid schedules for a given set of predicates.

● We provide case studies for two machine models: one with and one without using PR.
● CP can be used to find optimal solutions:

● Valuable as a lower bound for polynomial time algorithms.
● Easy comparability of PE properties and what-if scenarios.

● Current implementation using ORTools [3].
● More flexible version in OR-Tools is in-progress.
● Only viable for small task graphs.

% Start times of tasks
array[V] of var int: t_s;
% Finish times of tasks
array[V] of var int: t_f;
% PE a task runs on
array[V] of var int: process;
array[V] of string: tasklabels;
predicate no_overlap(var int: v1, var int: v2) =
 t_f[v1] < t_s[v2] \/ t_s[v1] > t_f[v2];

References
[1] Krommydas, Konstantinos, Wu-chun Feng, Christos D. Antonopoulos, and Nikolaos Bellas.
“Opendwarfs: Characterization of Dwarf-Based Benchmarks on Fixed and Reconfigurable
Architectures.” Journal of Signal Processing Systems 85, no. 3 (2016): 373–92.
[2] Jungblut, Pascal, and Dieter Kranzlmüller. “Optimal Schedules for High-Level Programming
Environments on FPGAs with Constraint Programming,” 96–99. IEEE Computer Society, 2022.
[3] Nethercote, Nicholas, Peter J. Stuckey, Ralph Becket, Sebastian Brand, Gregory J. Duck, and
Guido Tack. “MiniZinc: Towards a Standard CP Modelling Language.” In International Conference
on Principles and Practice of Constraint Programming, 529–43. Springer, 2007.
[4] Vipin, Kizheppatt, and Suhaib A. Fahmy. “FPGA Dynamic and Partial Reconfiguration: A Survey
of Architectures, Methods, and Applications.” ACM Computing Surveys (CSUR) 51, no. 4 (2018):
1–39.
[5] Jungblut, Pascal, and Dieter Kranzlmüller. “Dynamic Spatial Multiplexing on FPGAs with
OpenCL.” In International Symposium on Applied Reconfigurable Computing, 265–74. Springer,
2021.
[6] https://github.com/intel/opencl-intercept-layer

Task Scheduling on FPGA-Based Accelerators without Partial Reconfiguration Pascal Jungblut, LMU Munich, Germany
Advisor: Dieter Kranzlmüller

Key Contributions
1.Flexible and arbitrarily accurate machine

models for FPGA-based accelerators.
2.Automated derivation of CP programs from

machine model.
3.Three heuristic-based polynomial-time

scheduling algorithms.
4.Automated recommendations for HLS code.
5.Traces of OpenDwarf executions on FPGAs.

mailto:pascal.jungblut@nm.ifi.lmu.de
http://mnm-team.org/~jungblut
http://github.com/pascalj
https://github.com/intel/opencl-intercept-layer

