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Motivation and Challenges

HPC applications checkpoint large volumes of data at high-frequency.

Checkpointing is a fundamental I/O pattern for a large number of scenarios:

fault-tolerance, analytics, reproducibility, revisiting previous states, etc.

Efficiently restoring previous checkpoints is important in productive scenarios, e.g.

adjoint computations revisit previous checkpoints during the backward pass.

Modern HPC systems are equipped with hierarchical memory tiers, e.g. GPU HBM,

DRAM, NVMe based SSDs, burst buffer, remote storage, etc.

State-of-art data-movement and checkpoint-restore runtimes are not optimized to

take advantage of fast HBM and interconnects (e.g. NVLink, NVSwitch).

Key Challenges

Slow flushes to larger cache tiers: GPU HBM cannot hold all checkpoints and

synchronous transfers through larger cache tiers increases application I/O time.

Checkpoint load imbalance: Cache consumption on various tiers is uneven, due to

which processes with abundant cache wait for others to write to slower tiers.

Slow cache initialization: Allocating, mapping and pinning various cache tiers for

short-lived applications incurs significant overheads on the application runtime.

Restore oblivious eviction and prefetching: Restore order is not exploited during

cache evictions to minimize cache misses, or during prefetch operations.

Overview of Key Contributions

Optimized multi-level flushing strategy: Hierarchical caching tiers, from GPU HBM

to remote storage, dedicated unidirectional transfer threads across each tier.

Collaborative load balancing strategy: Leverages spare high-speed cache on peer

devices/nodes and fast interconnects to avoid flushing to slower tiers.

Proactive asynchronous cache initialization and transfers: Minimizes application

I/O time by mitigating overheads of cache allocation, eviction, cache misses.

Leveraging foreknowledge of restore-order: Efficient management of eviction and

prefetching schedule based on finite-state-machine.

Caching Infrastructure and Implementation Overview

For data consistency, the application is blocked when checkpointing or restoring

from GPU cache, awaiting evictions, as shown in Fig. 1a and Fig. 1b, respectively.

Integrated with VELOC, a production-ready HPC checkpoint-restart runtime, to

perform transparent and asynchronous transfers across memory tiers.

Used for real-world workloads in the oil industry: Reverse-time migration (RTM).
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Figure 1. Interaction between hierarchical cache tiers during checkpoint and restore

Collaborative Checkpointing for Load Balancing

Uneven cache utilization forces the processes resident on overloaded cache to

write to slower tiers (Fig. 2a).

Our min-time max-flow scheduling strategy generates an optimal transfer

schedule to balance load across a given cache tier using fast interconnects (Fig. 2b).

On Nvidia DGX-1 system, our approach shows up to 4x faster checkpointing as

compared to transferring to the host memory when cache is exhausted (Fig. 3a).

Our approach generates optimal transfer schedules in sub-ms (Fig. 3b).
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Figure 2. Illustration of checkpoint size imbalance across GPUs
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Figure 3. Performance gains and response time of collaborative checkpointing

Efficient Cache Allocation for Fast Cache Initialization

High-frequency checkpoints are produced every few ms by short-lived jobs.

Cache allocation imposes initialization overhead on the application, which may not

get amortized over the applications’ execution time.

Touching memory incrementally forces physical page mapping, that can be done

either concurrently during transfers, or exclusively after I/O (Fig. 4a).

On Nvidia DGX-A100 system, our techniques minimize the checkpoint and total

I/O overheads by 26x and 12x, respectively, compared to the state-of-art (Fig. 4b).
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Figure 4. Cache allocation techniques and checkpointing workflow

Work in progress: Foreknowledge based eviction and prefetching

The deterministic restore-order of HPC applications, is not taken into

consideration while evicting previous checkpoints from cache tiers.

Existing data-movement engines are not optimized for concurrent checkpoint

production and consumption across cache tiers.

We design a finite-state-machine, we enable seamless transition of checkpoints

from checkpointing to prefetching phase that maximizes cache hits (Fig. 5a).

We develop a score-based look-ahead eviction technique that factors in the

restore hints provided by the application for efficient cache eviction.

On Nvidia DGX-A100 system with uniform sized checkpoints, we observe up to

11.7x faster restore operations as compared to the state-of-art solutions (Fig. 5b).

Scalability study on 4 nodes demonstrates 3.4x and 7.6x faster I/O throughput for

tightly coupled (Fig. 6a) and embarrassingly parallel (Fig. 6b) scenarios, respectively.
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Figure 5. Finite state machine and restore performance
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Figure 6. Scalability test of eviction and prefetch approaches

Conclusion and Discussions

State-of-the-art data-movement solutions incur significant I/O overheads on

applications while transferring across hierarchical memory tiers.

We highlight the challenges of large-scale high-frequency checkpointing for

modern HPC applications, that utilize checkpoint-restore beyond fault-tolerance.

We design hierarchical caching infrastructure, efficient cache initialization and data

management strategies to minimize the application I/O wait time.

We plan to extend support of Nvidia GPUDirect storage that enables interfacing

between GPU and NVMe based SSDs to mitigate I/O contention on the host cache.
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