
Towards Efficient Checkpointing Across Deep Tiers of Memory Hierarchy
Avinash Maurya 1 (am6429@rit.edu) M. Mustafa Rafique 1 (Advisor) Bogdan Nicolae 2 (Advisor)

1Rochester Institute of Technology, NY, USA 2Argonne National Laboratory, IL, USA

Motivation and Challenges

HPC applications checkpoint large volumes of data at high-frequency.

Checkpointing is a fundamental I/O pattern for a large number of scenarios:

fault-tolerance, analytics, reproducibility, revisiting previous states, etc.

Efficiently restoring previous checkpoints is important in productive scenarios, e.g.

adjoint computations revisit previous checkpoints during the backward pass.

Modern HPC systems are equipped with hierarchical memory tiers, e.g. GPU HBM,

DRAM, NVMe based SSDs, burst buffer, remote storage, etc.

State-of-art data-movement and checkpoint-restore runtimes are not optimized to

take advantage of fast HBM and interconnects (e.g. NVLink, NVSwitch).

Key Challenges

Slow flushes to larger cache tiers: GPU HBM cannot hold all checkpoints and

synchronous transfers through larger cache tiers increases application I/O time.

Checkpoint load imbalance: Cache consumption on various tiers is uneven, due to

which processes with abundant cache wait for others to write to slower tiers.

Slow cache initialization: Allocating, mapping and pinning various cache tiers for

short-lived applications incurs significant overheads on the application runtime.

Restore oblivious eviction and prefetching: Restore order is not exploited during

cache evictions to minimize cache misses, or during prefetch operations.

Overview of Key Contributions

Optimized multi-level flushing strategy: Hierarchical caching tiers, from GPU HBM

to remote storage, dedicated unidirectional transfer threads across each tier.

Collaborative load balancing strategy: Leverages spare high-speed cache on peer

devices/nodes and fast interconnects to avoid flushing to slower tiers.

Proactive asynchronous cache initialization and transfers: Minimizes application

I/O time by mitigating overheads of cache allocation, eviction, cache misses.

Leveraging foreknowledge of restore-order: Efficient management of eviction and

prefetching schedule based on finite-state-machine.

Caching Infrastructure and Implementation Overview

For data consistency, the application is blocked when checkpointing or restoring

from GPU cache, awaiting evictions, as shown in Fig. 1a and Fig. 1b, respectively.

Integrated with VELOC, a production-ready HPC checkpoint-restart runtime, to

perform transparent and asynchronous transfers across memory tiers.

Used for real-world workloads in the oil industry: Reverse-time migration (RTM).

Application buffer GPU cache

Host cache

Application

 Checkpoint
D2D copy: App buffer

to GPU cache

Restore phase

App wait

Return control to app

Compute

Main app thread
GPU to Host trf thread
Host to filesystem trf thread

D2H: Checkpoint from

GPU cache to host cache

H2F: Checkpoint from

host cache to filesystem

Dotted arrow means wait until destination

memory tier has enough space

Managed by
VeloC -GPU

GPU HBM

Optional transfer to

 remote storage

1

2
3

4

(a) Checkpoint

GPU cache GPU HBM

Host cache

Restore request

D2D copy: GPU

cache to App buffer

App wait

Compute

Next shot

Return
control to app

Prefetch from host

cache to GPU cache

Prefetch from filesystem to host cache

After checkpointing phase
Main app thread
Prefetch thread

Dotted arrow means wait until destination
memory tier has enough space

Managed by
VeloC-GPU

Application buffer

Transfer from remote

 storage if required

1

234

(b) Restore

Figure 1. Interaction between hierarchical cache tiers during checkpoint and restore

Collaborative Checkpointing for Load Balancing

Uneven cache utilization forces the processes resident on overloaded cache to

write to slower tiers (Fig. 2a).

Our min-time max-flow scheduling strategy generates an optimal transfer

schedule to balance load across a given cache tier using fast interconnects (Fig. 2b).

On Nvidia DGX-1 system, our approach shows up to 4x faster checkpointing as

compared to transferring to the host memory when cache is exhausted (Fig. 3a).

Our approach generates optimal transfer schedules in sub-ms (Fig. 3b).

GPU 3
(0)

GPU 2
(0)

GPU 0
(+480)

GPU 1
(-480)

CPU-0

GPU 4
(-480)

GPU 5
(0)

GPU 7
(0)

GPU 6
(+240)

CPU-1
Dual
NVLink
Single
NVLink
PCIe
Intel
QPI
GPUs having
spare capacity

GPUs having
remainder

(a) Nvidia DGX-1 interconnect showing remainder (+)

and spare (-) capacity in MB on each GPU

src

0

6

(480, 0)
4 sink

(, 0)

Host

(480, 0)

1

(480, 0)

(240, 0)

(480,1/)

(480,)

(480,)

(240,)

(240,)

Single NVLink
Double NVLink
PCIe Link

Hypothetical Link

Edge parameters:
(capacity, cost)

GPUs having
remainder data Devices having

spare capacity

Backedges

(b) Min-time max-flow graph

Figure 2. Illustration of checkpoint size imbalance across GPUs

(a) Relative checkpoint overhead (b) Response time for transfer scheduling

Figure 3. Performance gains and response time of collaborative checkpointing

Efficient Cache Allocation for Fast Cache Initialization

High-frequency checkpoints are produced every few ms by short-lived jobs.

Cache allocation imposes initialization overhead on the application, which may not

get amortized over the applications’ execution time.

Touching memory incrementally forces physical page mapping, that can be done

either concurrently during transfers, or exclusively after I/O (Fig. 4a).

On Nvidia DGX-A100 system, our techniques minimize the checkpoint and total

I/O overheads by 26x and 12x, respectively, compared to the state-of-art (Fig. 4b).

Device
cache full

(A) Standard allocation and registration

(C) Sequential touch and flush

(B) Concurrent touch and flush

Wait for buffer
touching

Compute

Touch

App to device
cache transfer

Device to touched
host buffer

Register host
buffer Idle host buffer

Device to untouched
host buffer

D2D blocked

Device to registered
host buffer

(a) Overview of cache alloc. techniques

5 10 15 20 30 40 60
Compute interval (ms)

0

50

100

150

Ck
pt

 o
ve

rh
ea

d
(s

) Direct pin
UVM

Incr. memset
Our approach

5 10 15 20 30 40 60
Compute interval (ms)

0

50

100

150

I/O
 o

ve
rh

ea
d

(s
) Direct pin

UVM
Incr. memset
Our approach

(b) Checkpoint and total I/O overheads using

different cache allocation techniques

Figure 4. Cache allocation techniques and checkpointing workflow

Work in progress: Foreknowledge based eviction and prefetching

The deterministic restore-order of HPC applications, is not taken into

consideration while evicting previous checkpoints from cache tiers.

Existing data-movement engines are not optimized for concurrent checkpoint

production and consumption across cache tiers.

We design a finite-state-machine, we enable seamless transition of checkpoints

from checkpointing to prefetching phase that maximizes cache hits (Fig. 5a).

We develop a score-based look-ahead eviction technique that factors in the

restore hints provided by the application for efficient cache eviction.

On Nvidia DGX-A100 system with uniform sized checkpoints, we observe up to

11.7x faster restore operations as compared to the state-of-art solutions (Fig. 5b).

Scalability study on 4 nodes demonstrates 3.4x and 7.6x faster I/O throughput for

tightly coupled (Fig. 6a) and embarrassingly parallel (Fig. 6b) scenarios, respectively.

INIT

Write in
Progress

Read in
Progress

Eligible for
eviction

Not eligible
for eviction

Checkpointing Prefetching*

Write
Complete

Read
Complete

Flushed Consumed

* Checkpoints entering any
of the prefetching states can
be evicted only by the
"Consumed" state

Eligible only when
not transitioned
into prefetching

(a) Checkpoint life-cycle as finite state machine

Sequential restore Reverse restore Irregular restore0

10

20

30

40

50

60

70

Re
st

or
e

 t
hr

ou
gh

pu
t

(G
B/

s)

3.
6

3.
6

3.
65.
3 10

.7

7.
810

.3

10
.2

118.
7

25
.7

13
.6

23
.7

25 23
.3

9.
1

30
.2

15
.8

27

31
.3

42

No hints, ADIOS2
No hints, FIFO
No hints, Score

Single hint, FIFO
Single hint, Score

All hints, FIFO
All hints, Score

(b) Restore throughput

Figure 5. Finite state machine and restore performance

1 2 4 8 16 32
Number of processes

0

20

40

60

80

Ag
gr

eg
at

ed
 I/

O
 t

hr
ou

gh
pu

t
pe

r
pr

oc
es

s
(G

B/
s)

6.
9

5.
2

6.
0

4.
1

4.
1

4.
1

30
.9

18
.0

19
.2

12
.1

8.
5

7.
4

40
.7

24
.1

22
.6

15
.5

8.
6

8.
4

51
.6

21
.4 29

.7

14
.0

12
.3

12
.1

70
.8

28
.5 34

.4

17
.4

12
.8

13
.9

ADIOS2
No hints, FIFO
No hints, Score

All hints, FIFO
All hints, Score

Checkpoint
Restore

(a) Tightly coupled (sync at each iteration)

1 2 4 8 16 32
Number of processes

0

20

40

60

80

Ag
gr

eg
at

ed
 I/

O
 t

hr
ou

gh
pu

t
pe

r
pr

oc
es

s
(G

B/
s)

6.
9

5.
4

6.
3

5.
1

5.
2

4.
9

39
.3

34
.9

29
.0

18
.7

17
.8

18
.3

55
.9

28
.6

27
.5

26
.7

27
.4

27
.5

54
.8

44
.3

41
.7

25
.6

25
.6 28

.6

71
.2

37
.0

36
.3

32
.1 35

.8

37
.1

ADIOS2
No hints, FIFO
No hints, Score

All hints, FIFO
All hints, Score

Checkpoint
Restore

(b) Embarrassingly parallel across all GPUs

Figure 6. Scalability test of eviction and prefetch approaches

Conclusion and Discussions

State-of-the-art data-movement solutions incur significant I/O overheads on

applications while transferring across hierarchical memory tiers.

We highlight the challenges of large-scale high-frequency checkpointing for

modern HPC applications, that utilize checkpoint-restore beyond fault-tolerance.

We design hierarchical caching infrastructure, efficient cache initialization and data

management strategies to minimize the application I/O wait time.

We plan to extend support of Nvidia GPUDirect storage that enables interfacing

between GPU and NVMe based SSDs to mitigate I/O contention on the host cache.

Publications

[1] Avinash Maurya, Bogdan Nicolae, Mustafa Rafique, Amr M. Elsayed, Thierry Tonellot, and Franck Cappello. Towards

Efficient Cache Allocation for High-Frequency Checkpointing. In Proceedings of the 29th IEEE International Conference on

High Performance Computing, Data, and Analytics, 2022 (HiPC’22).

[2] Avinash Maurya, Bogdan Nicolae, Mustafa Rafique, Thierry Tonellot, and Franck Cappello. Towards Efficient I/O

Scheduling for Collaborative Multi-Level Checkpointing. In Proceedings of the 29th IEEE International Symposium on the

Modeling, Analysis, and Simulation of Computer and Telecommunication Systems (MASCOTS’21), Virtual, Portugal, 2021.

