
Memory Access Prediction

ML-Based Prefetching
• Integrating ML-based predictor and architecture
• Prefetching workspace: virtual/physical address
• Prefetching configuration: degree, distance
• Model online update
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Background:
• Development of processors: TPUs, accelerators,

heterogenous architectures
• Data intensive workloads: graph analytics,

machine learning algorithms, AI applications
• Bottleneck shifting towards memory performance

Data Prefetching:
• Predict future memory accesses
• Issue a fetch in advance of actual reference
• Hide memory latency
• Improve instructions per cycle (IPC)

Research Hypothesis:
Machine learning can be used to achieve
• High-quality memory access prediction
• High-performance data prefetching
• Overall system performance improvement

Overall Design

Introduction
Optimization 1: RNN Augmented Offset
Prefetcher (RAOP)
• Developing a framework integrating ML-based

memory access predictor, computer architecture,
and an existing offset prefetcher

• Outperforms state-of-the-art prefetchers

Optimization 2: Clustering-Driven Meta-LSTM
for Memory Access Prediction (C-MemMAP)
• Can𝑚models predict 𝐴 applications (𝑚≪𝐴)?
• Trace clustering: delegated model (DM) clustering
• Multi-task: meta-learning for LSTM
• Shows higher adaptability and generalizability

Overall framework of C-MemMAP

Overall framework of RAOP Prefetching policy

IPC improvement of RAOP and baselines

Trace clustering

Adaptability Generalizability

Approach Optimization 3: Address Segmentation for
Attention-Based Prefetching (TransFetch)
• Goal: address the class explosion, labeling,

tokenization, and latency challenges
• Input: fine-grained address segmentation

• Labeling/output: delta bitmap

• Model: attention-based predictor

• Results: TransFetch achieves 38.75% IPC
improvement, outperforming rule-based
prefetcher BOP by 10.44%, outperforming ML-
based prefetcher Voyager by 6.64%

Class Explosion Labeling

Tokenization Latency

Challenges

1 D → 2 D

TransFetch performance
Overall design

Mapping address 
deltas to a bitmap

Fine-grained address segmentation

Attention-based memory access predictor

Optimization 4: Reinforced Ensemble
Framework for Prefetching (ReSemble)
• Different trace patterns benefit from different

prefetchers
• We propose a reinforcement learning-based

ensemble framework that enables multiple
prefetchers to complement each other

Different trace patterns

Different trace benefits from different prefetchers

Overall structure of ReSemble

Learning process of ReSemble

Conclusion
• We developed RAOP for hardware prefetching

framework, C-MemMAP for smaller model size,
TransFetch for higher prediction performance
and parallelizability, and ReSemble for online
adaptation to various trace patterns

• In the future we will incorporate more software
and context information for higher prediction
and prefetching performance
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• Multi-head self-attention
• Powerful and parallelizable

• Multi-label classification
• Deltas within a range
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