Machine Learning for Memory Access Prediction and Data Prefetching

Pengmiao Zhang, Viktor K. Prasanna (Adviser)

Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California

USC University of Southern California

Introduction

Background:

- Development of processors: TPUs, accelerators, heterogenous architectures
- Data intensive workloads: graph analytics, machine learning algorithms, Al applications
- Bottleneck shifting towards memory performance

Data Prefetching:

- Predict future memory accesses
- Issue a fetch in advance of actual reference
- Hide memory latency
- Improve instructions per cycle (IPC)

Research Hypothesis:

Machine learning can be used to achieve

- High-quality memory access prediction
- High-performance data prefetching
- Overall system performance improvement

Challenges

Memory Access Prediction

ML-Based Prefetching

- Integrating ML-based predictor and architecture
- Prefetching workspace: virtual/physical address
- Prefetching configuration: degree, distance
- Model online update

Overall Design

Approach

Optimization 1: Offset Augmented RNN Prefetcher (RAOP)

- Developing a framework integrating ML-based memory access predictor, computer architecture, and an existing offset prefetcher
- Outperforms state-of-the-art prefetchers

Optimization 2: Clustering-Driven Meta-LSTM for Memory Access Prediction (C-MemMAP)

- Can m models predict A applications $(m \ll A)$?
- Trace clustering: delegated model (DM) clustering
- Multi-task: meta-learning for LSTM
- Shows higher adaptability and generalizability

Optimization 3: Address Segmentation for Attention-Based Prefetching (TransFetch)

- Goal: address the class explosion, labeling, tokenization, and latency challenges
- Input: fine-grained address segmentation

Labeling/output: delta bitmap

- Multi-label classification
- Deltas within a range

- Model: attention-based predictor
 - Multi-head self-attention
 - Powerful and parallelizable

Attention-based memory access predictor

38.75% rule-based outperforming improvement, prefetcher BOP by 10.44%, outperforming MLbased prefetcher Voyager by 6.64%

Optimization Reinforced Ensemble Framework for Prefetching (ReSemble)

- Different trace patterns benefit from different prefetchers
- We propose a reinforcement learning-based ensemble framework that enables multiple prefetchers to complement each other

Conclusion

We developed RAOP for hardware prefetching framework, C-MemMAP for smaller model size, TransFetch for higher prediction performance and parallelizability, and ReSemble for online adaptation to various trace patterns

Learning process of ReSemble

In the future we will incorporate more software and context information for higher prediction and prefetching performance

Acknowledgements

This work is supported by U.S. National Science Foundation under grant numbers CCF-1912680 and PPoSS-2119816.

