Y-TASK (AMT) SYSTEMS

OSNER
LM, jonas.posner@uni-kassel.de

RESOURCE ELASTICITY

We propose four techniques to protect programs transparently. * We propose a technique to enable the addition and release of nodes at

e All perform localized recovery and continue the program execution with runtime by transparently relocating tasks accordingly.

fewer resources after failures. e We derive formulas that estimate the overhead-free running time of
work stealing programs with a changing number of resources.

MOTIVATION FAULT TOLERANCE

e Recently, HPC applications are getting more and more diverse, including
irregular ones limiting the predictability of computations.

e To enable efficient and productive programming of today’s

supercomputers and beyond, a variety of issues must be addressed, e.g.: _ Task-level Checkpointing (TC): Writes uncoordinated checkpoints

— Load Balancing: utilizing all resources equally, comprising descriptors of all open tasks in a resilient store. * Analyses show costs for adding and releasing nodes below 0.5 seconds.

— Fault Tolerance: coping with hardware failures, and
— Resource Elasticity : allowing the addition/release of resources.

0.5 0.5

— Incremental and Selective lnsk-level Checkpointing (IncTC): Saves only StaficSyn—se— ||
parts of open tasks. W i | ou

— Supervision with Steal Tracking (SST): Writes no checkpoints at all, but
exploits natural task duplication of work stealing.

— Combination of TC and SST (LogTC): Logs stealing events to reduce the
number of checkpoints.

S‘caticSyn—)(—I

e In this work, we address above issues in the context of AMT for clusters. 03 |

0.3
e In AMT, programmers split a computation into many fine-grained
execution units (called tasks), which are dynamically mapped to
processing units (called workers) by a runtime system. We consider

dynamic independent tasks, which can be generated at runtime.

Time in seconds
Time in seconds

e Experiments show no clear winner between the techniques.

e Compared to the well-known checkpoint/restart library DMTCP, our
techniques clearly pay off and have significantly less overhead.

LOAD BALANCING

We propose a coordinated work stealing technique that transparently
schedules tasks to resources of the overall system, balancing the

Released nodes/processes (workers) Added nodes/processes (workers)

e For instance, TC has a failure-free running time overhead below 1% and
a recovery overhead below 0.5 seconds, both for smooth weak scaling. Figure 4: Costs for adding and releasing nodes

e We derive formulas predicting running times including failure handling. e Simulations of]Ob set executions with several heuristics show that the

workload over all processing units. 0 e makespan can be reduced by up to 20%.
e In this context, we introduce novel tasking constructs for spawning 1= | TC formula % .
L : : SST 3720 Earli —
dynamic independent tasks and computing their results. g ST - | o srop RigidPreiNodes [opmcrone = |
e Tasks can be canceled, which is useful for, e.g., search problems. E S 3680 Eafﬁffgggg m—
.. O 150 Lo e J 3 Earli
* Productivity evaluations show intuitive use compared to other ; 2060 - il DerlierStart mem
programming systems such as PCJ and Spark. g MO T 1 g 3640 1
1 111 E 130 23620 |
e Experiments show good scalability. I i] é 2600
o [TS B o e “ 0|
e Ho = j j 20 40 60 80 100
100 TSP —— e oL 1 . s 12 Percentage of malleable jobs
b e Figure 5: Makespan simulations of a varying number of elastic jobs
- MatMul —@— R - Figure 2: Total running times for failures 5 ' P yms]
1B e e== e Simulations of job set executions show that the makespan can be
reduced by up to 97%. CONCLUSIONS
—————— +++++++++++++++++++++++++++++++++++ eee ~ S
- | 900 e We have proposed
800 — a novel coordinated work stealing technique that achieves both intra-
N £ 700 and inter-process load balancing,
A %@‘30 & 2 600 — four novel fault tolerance techniques to protect programs
K ° = 500 transparently while incurring negligible overhead, and
, Nodes/ processes {workers) | g 400 — a novel resource elasticity technique that enables programs to
Figure 1: Inter-process speedups over running time with 1 process with 40 workers S 300] transparently adapt to the addition or release of multiple nodes while
U tected
200 P —— incurring negligible overhead.
REFERENCES 100 SST —H= - e AMT gnables efficient programming, scalab.ility,.and can Provide load
[1] Jonas Posner. “Load Balancing, Fault Tolerance, and Resource Elasticity 0 0 ol 92 93 of 95 96 of o8 99 o0 balancing, fault tolerance, and resource elasticity in an efficient way:.
for Asynchronous Many-Task Systems”. PhD thesis. University of Kassel Component MTBF in years e Future work should adapt our techniques to heterogeneous architectures
(Germany), 2021. DOI: 10.17170/kobra-202207286542. Figure 3: Makespan simulations of unprotected jobs and protected jobs such as GPUs or FPGAs.

mailto:jonas.posner@uni-kassel.de
https://doi.org/10.17170/kobra-202207286542

