Custom 8-bit Floating Point Value Format for Reducing Shared Memory Bank Conflict in Approximate Nearest Neighbor Search
DescriptionThe k-nearest neighbor search is used in various applications such as machine learning, computer vision, database search, and information retrieval. While the computational cost of the exact nearest neighbor search is enormous, an approximate nearest neighbor search (ANNS) is being paid much attention. IVFPQ is one of the ANNS methods. Although we can leverage the high bandwidth and low latency of shared memory to compute the search phase of the IVFPQ on NVIDIA GPUs, the throughput can degrade due to shared memory bank conflict. To reduce the bank conflict and improve the search throughput, we propose a custom 8-bit floating point value format. This format doesn’t have a sign bit and can be converted from/to FP32 with a few instructions. We use this format for IVFPQ on GPUs and get better performance without significant recall loss compared to FP32 and FP16.
Event Type
Research Posters
TimeWednesday, 16 November 20228:30am - 5pm CST
Registration Categories
Poster view
Back To Top Button