PowerMan: Online Power Capping by Computationally Informed Machine Learning
DescriptionAppropriately adjusting the power draw of computational hardware plays a crucial role in its efficient use. While vendors have already implemented hardware-controlled power management, additional energy savings are available, depending on the state of the machine. We propose the online classification of such states based on computationally informed machine learning algorithms to adjust the power cap of the next time step. This research highlights that the overall energy consumption can be reduced significantly, often without a prohibitive penalty in the runtime of the applications.
Event Type
Posters
Research Posters
TimeTuesday, 15 November 20228:30am - 5pm CST
LocationC1-2-3
Registration Categories
TP
XO/EX
Poster view
Back To Top Button