Efficient Sparse Deep Neural Network Computation on GPU with TVM
DescriptionThis poster presents GPU optimizations for Sparse Deep Neural Networks using Apache TVM. Although various deep neural network models exist, SpDNNs have shown great improvements in the size and memory of neural networks. SpDNNs provide unique scalability difficulties in which optimizations and advancements can be made. Apache TVM is a machine learning compiler framework for CPUs and GPUs. It has been shown to have promising improvements for the performance, deployment, and optimizations of the networks. To evaluate its effectiveness for SpDNNs, this work builds SpDNNs with Apache TVM and compares with current SpDNNs. When testing with various datasets, TVM-based implementation can achieve faster and more efficient optimizations.
Event Type
Posters
Research Posters
TimeTuesday, 15 November 20228:30am - 5pm CST
LocationC1-2-3
Registration Categories
TP
XO/EX
Poster view
Back To Top Button