Scaling Correlated Fragment Molecular Orbital Calculations on Summit
DescriptionCorrelated electronic structure calculations enable an accurate prediction of the physicochemical properties of complex molecular systems; however, the scale of these calculations is limited by their extremely high computational cost. The Fragment Molecular Orbital (FMO) method is arguably one of the most effective ways to lower this computational cost while retaining predictive accuracy. In this paper, a novel distributed many-GPU algorithm and implementation of the FMO method are presented. When applied in tandem with the Hartree-Fock and RI-MP2 methods, the new implementation enables correlated calculations on 623,016 electrons and 146,592 atoms in less than 45 minutes using 99.8% of the Summit supercomputer (27,600 GPUs). The implementation demonstrates remarkable speedups with respect to other current GPU and CPU codes, and excellent strong scalability on Summit achieving 94.6% parallel efficiency on 4600 nodes. This work makes feasible correlated quantum chemistry calculations on significantly larger molecular systems than before and with higher accuracy.
Event Type
TimeTuesday, 15 November 202210:30am - 11am CST
Registration Categories
Accelerator-based Architectures
File Systems and I/O
Reproducibility Badges
Session Formats
Back To Top Button