Accelerating Elliptic Curve Digital Signature Algorithms on GPUs
SessionAlgebraic Applications
DescriptionThe Elliptic Curve Digital Signature Algorithm (ECDSA) is an essential building block of various cryptographic protocols. In particular, most blockchain systems adopt it to ensure transaction integrity. However, due to its high computational intensity, ECDSA is often the performance bottleneck in blockchain transaction processing. Recent work has accelerated ECDSA algorithms on the CPU; in contrast, success has been limited on the GPU, which has great potential for parallelization but is challenging for implementing elliptic curve functions. In this paper, we propose RapidEC, a GPU-based ECDSA implementation for SM2, a popular elliptic curve. Specifically, we design architecture-aware parallel primitives for elliptic curve point operations, and parallelize the processing of a single SM2 request as well as batches of requests. Consequently, our GPU-based RapidEC outperformed the state-of-the-art CPU-based algorithm by orders of magnitude. Additionally, our GPU-based modular arithmetic functions as well as point operation primitives can be applied to other computation tasks.
Event Type
Paper
TimeTuesday, 15 November 20222:30pm - 3pm CST
LocationC141-143-149
TP
Applications
Numerical Algorithms
Security
Recorded
Archive
view