Scalable Adaptive Finite Element Framework for Multiphysics Simulations
DescriptionEfficiently and accurately simulating partial differential equations (PDEs) in and around arbitrarily defined geometries, especially with high levels of adaptivity, has significant implications for different application domains. In this work, we develop a fast construction of a ‘good’ adaptively-refined incomplete octree based mesh capable of carving out arbitrarily shaped void regions from the parent domain: an essential requirement for fluid simulations around complex objects. Further, we integrate the mesh generation with Petsc to solve several multiphysics and multiphase phenomena. We showcase the applicability of the algorithms to solve the large scale problems. The algorithms developed have enabled us to run the most resolved jet atomization simulations and demonstrated scaling till O(100K) processors on TACC Frontera.
Event Type
Doctoral Showcase
Posters
TimeTuesday, 15 November 20228:30am - 5pm CST
LocationC1-2-3
Registration Categories
TP
XO/EX
Poster view
Back To Top Button